Purpose: To validate flow assessment performed with three-dimensional (3D) three-directional velocity-encoded (VE) magnetic resonance (MR) imaging with retrospective valve tracking and to compare this modality with conventional two-dimensional (2D) one-directional VE MR imaging in healthy subjects and patients with regurgitation.
Materials And Methods: Patients and volunteers gave informed consent, and local medical ethics committee approval was obtained. Patient data were selected retrospectively and randomly from a database of MR studies obtained between July 2006 and July 2007. The 3D three-directional VE MR images were first validated in vitro and compared with 2D one-directional VE MR images. Mitral valve (MV) and tricuspid valve (TV) flow were assessed in 10 volunteers without valve insufficiency and 20 patients with valve insufficiency, with aortic systolic stroke volume (ASSV) as the reference standard.
Results: Phantom validation showed less than 5% error for both techniques. In volunteers, 3D three-directional VE MR images showed no bias for MV or TV flow when compared with ASSV, whereas 2D one-directional VE MR images showed significant bias for MV flow (15% overestimation, P < .01). TV flow showed 25% overestimation; however, this was insignificant because of the high standard deviation. Correlation with ASSV was strong for 3D three-directional VE MR imaging (r = 0.96, P < .01 for MV flow; r = 0.88, P < .01 for TV flow) and between MV and TV flow (r = 0.91, P < .01); however, correlation was weaker for 2D one-directional VE MR imaging (r = 0.80, P < .01 for MV flow; r = 0.22, P = .55 for TV flow) and between MV flow and TV flow (r = 0.34, P = .34). In patients (mean regurgitation fractions of 13% and 10% for MV flow and TV flow, respectively), correlation between MV flow and TV flow for 3D three-directional VE MR imaging was strong (r = 0.97, P < .01).
Conclusion: Use of 3D three-directional VE MR imaging enables accurate MV and TV flow quantification, even in patients with valve regurgitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.2492080146 | DOI Listing |
Pulmonology
December 2025
Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
Pulmonology
December 2025
Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.
Background: Nasal high flow (NHF) has been proposed to sustain high intensity exercise in people with COPD, but we have a poor understanding of its physiological effects in this clinical setting.
Research Question: What is the effect of NHF during exercise on dynamic respiratory muscle function and activation, cardiorespiratory parameters, endurance capacity, dyspnoea and leg fatigue as compared to control intervention.
Study Design And Methods: Randomized single-blind crossover trial including COPD patients.
Pulmonology
December 2025
Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei tintori, Monza, Italy.
Background: Non-invasive helmet respiratory support is suitable for several clinical conditions. Continuous-flow helmet CPAP systems equipped with HEPA filters have become popular during the recent Coronavirus pandemic. However, HEPA filters generate an overpressure above the set PEEP.
View Article and Find Full Text PDFPulmonology
December 2025
Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
Nasal high flow (NHF) therapy is an established form of non invasive respiratory support used in acute and chronic care. Recently, a new high flow nasal cannula with asymmetric prongs was approved for clinical use. The clinical benefits of the new cannula have not yet been defined and no evidence are available on the use of asymmetric NHF support in patient with Chronic Obstructive Pulmonary Disease (COPD).
View Article and Find Full Text PDFJ Sports Sci
January 2025
Physical Activity, Sport and Exercise (PHASE) Research Group, School of Allied Health (Exercise Science), Murdoch University, Perth, Australia.
This study examined internal, external training loads, internal:external ratios, and aerobic adaptations for acute and short-term chronic repeated-sprint training (RST) with blood flow restriction (BFR). Using randomised crossover (Experiment A) and between-subject (Experiment B) designs, 15 and 24 semi-professional Australian footballers completed two and nine RST sessions, respectively. Sessions comprised three sets of 5-7 × 5-second sprints and 25 seconds recovery, with continuous BFR (45% arterial occlusion pressure) or without (Non-BFR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!