AI Article Synopsis

  • The common methods for encapsulating hydrophilic drugs in nanoparticles (NP) have low efficiency due to the drugs easily moving into the surrounding water.
  • The researchers proposed a new technique called double emulsion solvent diffusion (DES-D) that uses a partially water-soluble organic solvent to improve the encapsulation of hydrophilic drugs, using alendronate as a test drug.
  • This new method resulted in nanoparticles that are smaller, have better size consistency, a higher encapsulation rate, and use more biocompatible materials, while still maintaining the drug's effectiveness against macrophages and monocyte depletion in animal models.

Article Abstract

The commonly utilized techniques for encapsulating hydrophilic molecules in NP suffer from low encapsulation efficiency because of the drug rapid partitioning to the external aqueous phase. We hypothesized that combining the double emulsion system with a partially water-soluble organic solvent, could result in better encapsulation yield of hydrophilic molecules in nano-sized NP, and the utilization of both biocompatible surfactants and solvents. As a model drug we used alendronate, a hydrophilic low MW bisphosphonate. The new NP preparation technique, double emulsion solvent diffusion (DES-D), resulted in improved formulation characteristics including smaller size, lower size distribution, higher encapsulation yield, and more biocompatible ingredients in comparison to classical methods. The utilization of partially water-miscible organic solvent (ethyl acetate) enabled rapid diffusion through the aqueous phase forming smaller NP. In addition, the formulated alendronate NP exhibited profound inhibition of raw 264 macrophages, depletion of rabbit's circulating monocytes, and inhibition of restenosis in the rat model. It is concluded that the new technique is advantageous in terms of smaller size, lower size distribution, higher encapsulation yield, and more biocompatible ingredients, with unaltered bioactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2008.09.073DOI Listing

Publication Analysis

Top Keywords

double emulsion
12
hydrophilic molecules
12
encapsulation yield
12
emulsion solvent
8
solvent diffusion
8
encapsulating hydrophilic
8
aqueous phase
8
organic solvent
8
smaller size
8
size lower
8

Similar Publications

Essential oils application as natural preservatives is challenging owning to low solubility and stability to harsh conditions, while incorporation of essential oils into nanoemulsion systems can effectively improve these issues. Therefore, the nanoemulsion of () and cardamom essential oils were fabricated through self-emulsification technique and evaluated their size, ζ-potential, antioxidative and antibacterial activities. The effect of double nanomulsion on the textural and sensorial properties of Mortadella sausage was also examined under chilling temperature (4 °C).

View Article and Find Full Text PDF

Complete shielding of multivitamins to reduce toxic peroxides in the parenteral nutrition (C-SMART-PN): A randomized controlled pilot study.

Nutr Clin Pract

January 2025

Department of Nutrition, Centre Hospitalier Universitaire Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada.

Background: When exposed to ambient light, parenteral nutrition (PN) contamination with peroxides almost doubles, which increases oxidative stress in preterm infants, contributing to the development of bronchopulmonary dysplasia. The American Society for Parenteral and Enteral Nutrition (ASPEN) recommends complete PN photoprotection to reduce peroxide contamination and optimize its integrity but acknowledges the challenges of its implementation. In this study, a novel photoprotection procedure was tested for its effectiveness in reducing peroxide load and limiting ascorbic acid degradation, and for its feasibility and effectiveness in reducing urinary peroxide levels in preterm infants.

View Article and Find Full Text PDF

: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.

View Article and Find Full Text PDF

This study aimed to develop gastroretentive tablets based on mucoadhesive-floating systems with encapsulated gentian (, Gentianaceae) root extract to overcome the low bioavailability and short elimination half-life of gentiopicroside, a dominant bioactive compound with systemic effect. The formulation also aimed to promote the local action of the extract in the stomach. Tablets were obtained by direct compression of sodium bicarbonate (7.

View Article and Find Full Text PDF

L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release.

Pharmaceutics

December 2024

Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!