Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 microg/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P<0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P<0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P<0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor beta was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P<0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P<0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613954 | PMC |
http://dx.doi.org/10.1016/j.taap.2008.09.010 | DOI Listing |
Alzheimers Dement
December 2024
University of Manitoba, Winnipeg, MB, Canada.
Background: Mitochondrial bioenergetics are essential for cellular function, specifically the intricacies of the electron transport chain (ETC), with Complex IV playing a crucial role in unraveling the mechanisms governing energy production. Mathematical models offer a valuable approach to simulate these complex processes, providing insights into normal mitochondrial function and aberrations associated with various diseases, including neurodegenerative disorders. Our research focuses on introducing and refining a mathematical model, emphasizing Complex IV in the ETC, with objectives including incorporating mitochondrial activity modulation using inhibiting and uncoupling reagents, akin to oxygen consumption experiments.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Southern California, Los Angeles, CA, USA.
Background: Optimal cerebral blood flow is crucial to maintaining cognitive function. Cerebrovascular reactivity (CVR) is a dynamic measure of cerebrovascular function which represents the ability of cerebral blood vessels to regulate blood flow in response to vasoactive stimuli. Prior studies have demonstrated an association between impaired CVR and cognitive function in cerebrovascular and neurodegenerative conditions, including cerebral amyloid angiopathy and Alzheimer disease.
View Article and Find Full Text PDFClin Chem
January 2025
Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.
Background: Mate-pair sequencing detects both balanced and unbalanced structural variants (SVs) and simultaneously informs in relation to both genomic location and orientation of SVs for enhanced variant classification and clinical interpretation, while chromosomal microarray analysis (CMA) only reports deletion/duplication. Herein, we evaluated its diagnostic utility in a prospective back-to-back prenatal comparative study with CMA.
Methods: From October 2021 to September 2023, 426 fetuses with ultrasound anomalies were prospectively recruited for mate-pair sequencing and CMA in parallel for prenatal genetic diagnosis.
Clin Chem
January 2025
Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Institute, National Institutes of Health, Bethesda, MD, United States.
Background: Prenatal cell-free DNA (cfDNA) screening is a success story of clinical genomics that has translated to and transformed obstetric care. It is a highly sensitive and specific method of screening for the most common fetal aneuploidies, including trisomies 13, 18, and 21. While primarily designed to detect fetal chromosomal abnormalities, the test also analyzes maternal cfDNA, which can complicate interpretation of results.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
Background: Lynch syndrome (LS) is an autosomal-dominant disorder that increases the risk of many cancers. To identify novel or rare pathogenic variants of MMR genes associated with LS, especially in Chinese pedigrees.
Methods: One four-generation Chinese Han family from northeast China with 29 members was enrolled.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!