Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although rabbit vascular smooth muscle cells (SMCs) showed a differentiated phenotype in three-dimensional type I collagen matrices (honeycombs, diameter of pores=200-500 microm), mouse vascular SMCs proliferated in honeycombs having the same pore size. Here we investigated the relationship between pore sizes of honeycombs and differentiation of SMCs using various pore sizes of honeycombs. Rabbit SMCs (length: 200+/-32 microm) and mouse SMCs (49+/-10 microm) formed crossbridges in honeycombs with 200-300 microm and less than 200 microm of pores, respectively. Both SMCs spread on the inner wall but did not form crossbridges in honeycombs with larger pores. [(3)H]Thymidine incorporation and cell number of both SMCs were decreased when the crossbridges were formed in honeycombs. Because proliferation inhibition and crossbridge formation were observed in the culture of rabbit and mouse SMCs using 200-300 microm and less than 200 microm pore sized honeycombs, respectively, these data suggested that forming crossbridges was important for the inhibition of proliferation of SMCs. Rabbit SMCs differentiation was accompanied by the expression of caldesmon heavy chain when cultured in honeycombs having less than 300 microm pores. Proliferation of mouse SMCs stopped in honeycombs having less than 200 microm pores, but caldesmon heavy chain was not detected despite the expression of its mRNA. Proliferation of SMCs stopped on plates when cells reached confluent state, however, caldesmon heavy chain was not expressed. These data suggested that an appropriate structure and suitable honeycomb pore size are important for the differentiation of SMCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mvr.2008.08.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!