H2AX phosphorylation in A549 cells induced by the bulky and stable DNA adducts of benzo[a]pyrene and dibenzo[a,l]pyrene diol epoxides.

Chem Biol Interact

Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Box 210, S-171 77 Stockholm, Sweden.

Published: January 2009

Early events in the cellular response to DNA damage, such as double strand breaks, rely on lesion recognition and activation of proteins involved in maintenance of genomic stability. One important component of this process is the phosphorylation of the histone variant H2AX. To investigate factors explaining the variation in carcinogenic potency between different categories of polycyclic aromatic hydrocarbons (PAHs), we have studied the phosphorylation of H2AX (H2AXgamma). A549 cells were exposed to benzo[a]pyrene diol epoxide [(+)-anti-BPDE] (a bay-region PAH) and dibenzo[a,l]pyrene diol epoxide [(-)-anti-DBPDE] (a fjord-region PAH) and H2AXgamma was studied using immunocytochemistry and Western blot. Hydrogen peroxide (H(2)O(2)) was used to induce oxidative DNA damage and strand breaks. As showed with single cell gel electrophoresis, neither of the diol epoxides resulted in DNA strand breaks relative to H(2)O(2). Visualisation of H2AXgamma formation demonstrated that the proportion of cells exhibiting H2AXgamma staining at 1h differed between BPDE, 40% followed by a decline, and DBPDE, <10% followed by an increase. With H(2)O(2) treatment, almost all cells demonstrated H2AXgamma at 1h. Western blot analysis of the H2AXgamma formation also showed concentration and time-dependent response patterns. The kinetics of H2AXgamma formation correlated with the previously observed kinetics of elimination of BPDE and DBPDE adducts. Thus, the extent of H2AXgamma formation and persistence was related to both the number of adducts and their structural features.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2008.09.015DOI Listing

Publication Analysis

Top Keywords

strand breaks
12
a549 cells
8
dibenzo[al]pyrene diol
8
diol epoxides
8
dna damage
8
diol epoxide
8
h2ax phosphorylation
4
phosphorylation a549
4
cells induced
4
induced bulky
4

Similar Publications

DNA damage response mutations enhance the antitumor efficacy of ATR and PARP inhibitors in cholangiocarcinoma cell lines.

Oncol Lett

March 2025

Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand.

Cholangiocarcinoma (CCA) is a biliary tract carcinoma that is challenging to treat due to its heterogeneity and limited treatment options. Genetic alterations in DNA damage response (DDR) pathways and homologous recombination (HR) defects are common in CCA. This has prompted interest in the use of ataxia telangiectasia and Rad3-related protein (ATR) and poly(ADP-ribose) polymerase (PARP) inhibitors to treat CCA.

View Article and Find Full Text PDF

We present new developments for an ab-initio model of the neutron relative biological effectiveness (RBE) in inducing specific classes of DNA damage. RBE is evaluated as a function of the incident neutron energy and of the depth inside a human-sized reference spherical phantom. The adopted mechanistic approach traces neutron RBE back to its origin, i.

View Article and Find Full Text PDF

Aims: To explore physician-reported knowledge, use, and perceptions of genetic testing for advanced ovarian cancer management.

Materials & Methods: Gynecology/oncology specialists ( = 390) in the US, Europe, Canada, Japan, and Australia completed an online survey spanning March 2021 to April 2022.

Results: Physician-reported breast cancer gene mutation (BRCAm) testing rates increased over the 2 years before the survey; most patients underwent testing in the preceding 6 months.

View Article and Find Full Text PDF

Osteosarcoma is the most common primary cancer of the bone, with a peak incidence in children and young adults. Using multi-region whole-genome sequencing, we find that chromothripsis is an ongoing mutational process, occurring subclonally in 74% of osteosarcomas. Chromothripsis generates highly unstable derivative chromosomes, the ongoing evolution of which drives the acquisition of oncogenic mutations, clonal diversification, and intra-tumor heterogeneity across diverse sarcomas and carcinomas.

View Article and Find Full Text PDF

Genotoxicity testing of the anthraquinone dye Alizarin Red S.

Curr Res Toxicol

December 2024

Institute of Nutrition and Food Science, Department of Food Safety, University of Bonn, Germany.

The anthraquinone dye Alizarin Red S (ARS) is used for marking live animals, specifically as a tool for monitoring the stock of the endangered European eel by marking caught fish with ARS before releasing the eels back into the wild. As ARS can be found in recaptured eels even years later, knowledge of potential health hazards of ARS is essential for assessing the food safety of eels marked with ARS. As the compound class of anthraquinones is known for their genotoxic and carcinogenic properties, concerns were raised regarding the food safety of marked eels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!