There is considerable interest in the development of in vitro methods for the identification of contact sensitizers, including those that use cultured dendritic cells (DC), key players in cutaneous immune responses. Chemical allergens, such as dinitrobenzene sulfonic acid (DNBS), or skin irritants, such as benzene sulfonic acid (BS), induce modest changes in DC phenotype. In an attempt to increase the sensitivity of DC responses, DC have been co-cultured with chemical and DC activators (toll-like receptor [TLR] ligands). Cells were cultured with DNBS or BS at doses of equivalent cytotoxicity, together with sub-optimal doses of selected TLR ligands (Pam(3)Cys-Ser-(Lys)(4) [PAM], TLR1-2; macrophage-activating lipopeptide-2 [MALP-2], TLR6-2; or flagellin; TLR5). Both chemicals caused a decline in cell viability. DNBS induced a higher proportion of late apoptotic/necrotic cells whereas BS was associated with early apoptotic cells, suggesting different mechanisms of cell death. Some synergy was observed for interleukin (IL)-6 and tumor necrosis factor alpha production for DC co-cultured with BS and MALP-2/PAM. In contrast, there were marked synergistic effects on IL-6 secretion when DC were cultured with DNBS and flagellin. It may be possible to exploit this enhanced sensitivity of flagellin-activated DC for chemical allergen for the development of in vitro skin sensitization assays.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2008.09.012DOI Listing

Publication Analysis

Top Keywords

synergistic effects
8
toll-like receptor
8
development vitro
8
sulfonic acid
8
cultured dnbs
8
chemical
4
effects chemical
4
chemical insult
4
insult toll-like
4
receptor ligands
4

Similar Publications

Antifungal activity of different extractions of drone larvae (apilarnil).

Nat Prod Res

January 2025

Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.

Drone larvae (DL) has many biological activities thanks to the bioactive components it contains, but there are very few studies on its antimicrobial activity. The aim of this research was to determine the antifungal activity of DL (raw and lyophilised) water and ethanol extracts against fluconazole (FLU) sensitive and resistant yeast strains. The 87 fungal strains obtained from clinical samples were identified by phenotypic and molecular methods, and broth microdilution test was used for antifungal activity.

View Article and Find Full Text PDF

Fiber-based strain sensors, as wearable integrated devices, have shown substantial promise in health monitoring. However, current sensors suffer from limited tunability in sensing performance, constraining their adaptability to diverse human motions. Drawing inspiration from the structure of the spiranthes sinensis, this study introduces a unique textile wrapping technique to coil flexible silver (Ag) yarn around the surface of multifilament elastic polyurethane (PU), thereby constructing a helical structure fiber-based strain sensor.

View Article and Find Full Text PDF

Room-Temperature CsPbI-Quantum-Dot Reinforced Solid-State Li-Polymer Battery.

Small

January 2025

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.

View Article and Find Full Text PDF

Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.

View Article and Find Full Text PDF

Hydrogen-Bonded Organic Framework Nanoscintillators for X-Ray-Induced Photodynamic Therapy in Hepatocellular Carcinoma.

Adv Mater

January 2025

Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.

X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!