Local brain tissue oxygen (ptiO2) monitoring is frequently applied in patients at risk for cerebral ischemia. To identify ischemic thresholds, the normal range of local brain tissue oxygen pressure (ptiO2) values needs to be established. Ideally, such normal values are determined in healthy and awake subjects, so as to eliminate the possible influences of anesthetics on cerebral physiology or ptiO2. Thus far, however, such measurements have not been conducted, and to fill this void, we determined the ptiO2 values in normal white matter of awake patients undergoing functional stereotactic brain surgery. In 25 otherwise healthy patients, who underwent functional neurosurgery for treatment of a refractory movement disorder under local anesthesia, the ptiO2 of white matter was recorded continuously using a polarographic Clark type electrode monitoring system. Preoperative screening ruled out cognitive dysfunction or structural cerebral lesions. Reliable intraoperative ptiO2 values were obtained in 22 patients. After an adaptation period of 118+/-35 min (range, 47-171 min), we found an average normal ptiO2 of 22.6+/-7.2 mm Hg in the frontal white matter. In 11 patients, ptiO2 measurements were continued postoperatively for 24 h. During this period, a similar normal ptiO2 value of 23.1+/-6.6 mm Hg was found. No iatrogenic complications occurred. In conclusion, the normal ptiO2 of cerebral white matter is most likely lower than previously assumed. Further, the long adaptation time renders this widely applied monitoring instrument unreliable in detecting ischemia early after insertion and limits its usefulness for intraoperative monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/neu.2007.0402 | DOI Listing |
J Neuroinflammation
January 2025
Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden.
Background: Normal brain aging is associated with dopamine decline, which has been linked to age-related cognitive decline. Factors underlying individual differences in dopamine integrity at older ages remain, however, unclear. Here we aimed at investigating: (i) whether inflammation is associated with levels and 5-year changes of in vivo dopamine D2-receptor (DRD2) availability, (ii) if DRD2-inflammation associations differ between men and women, and (iii) whether inflammation and cerebral small-vessel disease (white-matter lesions) serve as two independent predictors of DRD2 availability.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
The ApoE ε4 allele (APOEε4) is a major genetic risk factor for sporadic Alzheimer's disease (AD) and is linked to demyelination and cognitive decline. However, its effects on the lipid transporters apolipoprotein E (ApoE) and fatty acid-binding protein 7 (Fabp7), which are crucial for the maintenance of myelin in white matter (WM) during the progression of AD remain underexplored. To evaluate the effects of APOEε4 on ApoE, Fabp7 and myelin in the WM of the frontal cortex (FC), we examined individuals carrying one ε4 allele that came to autopsy with a premortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI) and mild to moderate AD compared with non-carrier counterparts.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.
View Article and Find Full Text PDFNeuroimage
January 2025
Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China. Electronic address:
Environmental and social changes during early school age have a profound impact on brain development. However, it remains unclear how the brains of typically-developing children adjust white matter to optimize network topology during this period. This study aims to propose the fiber length distribution as a novel nodal metric to capture the continuous maturation of brain network.
View Article and Find Full Text PDFJ Psychiatr Res
January 2025
Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
The detection of rare or deviant stimuli shares common brain circuits involved in temporal processing and salience, critical for cognitive control. Disruption in these processes may contribute to the mechanisms of the disease and explain cognitive deficits observed in psychosis and related disorders. We designed a neuroimaging study, using oddball task-based functional sequences (fMRI) and diffusion tensor imaging (DTI), comparing healthy controls (HC, n = 14, 7 females) and patients with stable psychosis (PSY, n = 20, 10 females).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!