A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Manipulation of indoleamine 2,3-dioxygenase (IDO) for clinical transplantation: promises and challenges. | LitMetric

Manipulation of indoleamine 2,3-dioxygenase (IDO) for clinical transplantation: promises and challenges.

Expert Opin Biol Ther

Oxford University, John Radcliffe Hospital, Nuffield Department of Surgery, Headley Way, Oxford, OX3 9DU, UK.

Published: November 2008

Background: Since the discovery that indoleamine 2,3-dioxygenase (IDO) is a modulator for maintenance of fetomaternal immuno-privilege state, it has been implicated in tumour tolerance, autoimmune diseases and asthma. IDO is an IFN-gamma-inducible, intracellular enzyme that catalyzes the initial and rate-limiting step in the degradation of tryptophan. It has been suggested that IDO can regulate the immune system either through deprivation of tryptophan that is essential for T cell proliferation or via cytotoxic effects of kynurenine pathway metabolites on T cell survival.

Methods: The sources of information used were obtained through Pubmed/Medline.

Results/conclusion: While IDO emerges as a regulator of immunity, its role in controlling allo-response is unfolding. IDO can control T cell responses to allo-antigens and induce generation of allo-specific regulatory T cells. Exploiting IDO as a modulator of transplant rejection, many groups have manipulated its activity to prolong allograft survival in transplantation models. Despite the initial promise, its application to clinical transplantation may be limited. We therefore examine the potentials and limitations associated with clinical translation of IDO into a therapeutic.

Download full-text PDF

Source
http://dx.doi.org/10.1517/14712598.8.11.1705DOI Listing

Publication Analysis

Top Keywords

indoleamine 23-dioxygenase
8
ido
8
23-dioxygenase ido
8
clinical transplantation
8
ido modulator
8
manipulation indoleamine
4
ido clinical
4
transplantation promises
4
promises challenges
4
challenges background
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!