Binuclear ruthenium complexes that bind DNA by threading intercalation have recently been found to exhibit an exceptional kinetic selectivity for long polymeric adenine-thymine (AT) DNA. A series of oligonucleotide hairpin duplexes containing a central tract of 6-44 alternating AT base pairs have here been used to investigate the nature of the recognition mechanism. We find that, above a threshold AT tract length corresponding to one helix turn of B-DNA, a dramatic increase in threading intercalation rate occurs. In contrast, such length dependence is not observed for rates of unthreading. Intercalation by any mechanism that depends on the open end of the hairpin was found not to be important in the series of oligonucleotides used, as verified by including in the study a hairpin duplex cyclized by a copper-catalyzed "click" reaction. Our observations are interpreted in terms of a conformational pre-equilibrium, determined by the length of the AT tract. We finally find that mismatches or loops in the oligonucleotide facilitate the threading process, of interest for the development of mismatch-recognizing probes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja804427q | DOI Listing |
Biophys J
January 2025
Department of Physics, Northeastern University, Boston, MA, 02115, USA. Electronic address:
Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.
View Article and Find Full Text PDFPNAS Nexus
July 2023
Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka 804-8550, Japan.
Cyclic anthraquinone derivatives (cAQs), which link two side chains of 1,5-disubstituted anthraquinone as a threading DNA intercalator, have been developed as G-quartet (G4) DNA-specific ligands. Among the cAQs, cAQ-mBen linked through the 1,3-position of benzene had the strongest affinity for G4 recognition and stabilization in vitro and was confirmed to bind to the G4 structure in vivo, selectively inhibiting cancer cell proliferation in correlation with telomerase expression levels and triggering cell apoptosis. RNA-sequencing analysis further indicated that differentially expressed genes regulated by cAQ-mBen were profiled with more potential quadruplex-forming sequences.
View Article and Find Full Text PDFViruses
September 2022
Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padova, Italy.
2,6-dipeptidyl-anthraquinones are polycyclic planar systems substituted at opposite ring positions by short aminoacyl side chains. Derivatives with positively charged terminal amino acids showed in vitro inhibition of HIV-1 nucleocapsid (NC) protein correlating with threading intercalation through nucleic acid substrates. We found that the variation of the terminal amino acid into an aromatic moiety has profound effects on the NC inhibition of TAR-RNA melting, granting enhanced interaction with the protein.
View Article and Find Full Text PDFBiophys J
October 2022
Department of Physics, Photonics and Optical Engineering, Bridgewater State University, Bridgewater, Massachusetts. Electronic address:
Small-molecule DNA-binding drugs have shown promising results in clinical use against many types of cancer. Understanding the molecular mechanisms of DNA binding for such small molecules can be critical in advancing future drug designs. We have been exploring the interactions of ruthenium-based small molecules and their DNA-binding properties that are highly relevant in the development of novel metal-based drugs.
View Article and Find Full Text PDFOper Orthop Traumatol
August 2022
Aestheticum, München, Deutschland.
Objective: Minimally invasive arthroscopically assisted reconstruction of scaphoid nonunions.
Indications: Delayed union or nonunion of the scaphoid with sclerosis and with indication for bone transplantation. Limited arthritic changes at the radial styloid.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!