A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibitory effects of parthenolide on the angiogenesis induced by human multiple myeloma cells and the mechanism. | LitMetric

Inhibitory effects of parthenolide on the angiogenesis induced by human multiple myeloma cells and the mechanism.

J Huazhong Univ Sci Technolog Med Sci

Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Published: October 2008

AI Article Synopsis

  • Parthenolide (PTL) inhibits angiogenesis induced by multiple myeloma (MM) cells by reducing the migration and tubule formation of endothelial cells in vitro.
  • The treatment with PTL significantly decreased the expression of key proteins and cytokines involved in angiogenesis, such as VEGF and IL-6, indicating a potential mechanism for its effects.
  • Increased PTL concentrations led to lower levels of p65 protein and higher levels of IkappaB-alpha in MM cells, highlighting its potential role in manipulating signaling pathways involved in cancer progression.

Article Abstract

The inhibitory effects of parthenolide (PTL) on angiogenesis induced by multiple myeloma (MM) cells in vitro and the mechanism were investigated. Human MM line RPMI8226 cells were cultured in vitro. The effects of MM culture supernatant on the migration and tubule formation ability of human umbilical vein endothelial cells (HUVECs) treated with PTL were observed. By using Western blot, the expression of p65 and IkappaB-alpha in MM cells was detected. RT-PCR was used to assay the expression of VEGF, IL-6, MMP2 and MMP9 mRNA in MM cells. ELISA was used to measure the levels of VEGF and IL-6 in MM cell culture supernatant. The expression of MMP2 and MMP9 in MM cells was examined by immunohistochemistry. (1) In 3.5, 5.0, 7.5 and 10 micromol/L PTL groups the number of migrated cells was 310 +/- 56, 207 +/- 28, 127 +/- 21 and 49 +/- 10 respectively, which was significantly different from that in positive control group (598 +/- 47) (P<0.01). In 3.5 and 5.0 micromol/L PTL groups the areas of capillary-like structures were 0.092 +/- 0.003 and 0.063 +/- 0.002 mm2, significantly less than in positive control group (0.262 +/- 0.012 mm2) (P<0.01), but in 7.5 and 10 micromol/L PTL groups no capillary-like structures were found; (2) After treatment with different concentrations of PTL for 48 h, the expression of p65 protein was gradually decreased, while that of IkappaB-alpha was gradually enhanced with the increased concentration of PTL; (3) After treatment with 3.5, 5.0, 7.5 and 10 micromol/L PTL for 48 h, the VEGF levels in the supernatant were 2373.4 +/- 392.2, 1982.3 +/- 293.3, 1247.0 +/- 338.4 and 936.5+/-168.5 pg/mL respectively, significantly different from those in positive control group (2729 +/- 440.0 pg/mL) (P<0.05). After treatment with 7.5 and 10 micromol/L PTL, the IL-6 levels in the culture supernatant were 59.6 +/- 2.8 and 41.4 +/- 9.8 pg/mL respectively, significantly lower than in positive control group (1287.3 +/- 43.5 pg/mL) (P<0.05); (4) RT-PCR revealed that PTL could significantly inhibit the expression of VEGF and IL-6 mRNA in MM cells, but not influence the expression of MMP2 and MMP9 mRNA.; (5) Immunohistochemistry indicated that PTL had no significant effects on the expression of MMP2 and MMP9 protein in MM cells. It was concluded that the abilities of the culture supernatant of MM cells treated with PTL to induce endothelial cells migration and tubule formation were significantly reduced, suggesting PTL could obviously inhibit the angiogenesis induced by MM cells. PTL could decrease NF-kappaB activity and significantly suppress the expression of VEGF and IL-6 mRNA and protein, which might contribute to the mechanism by which PTL inhibited the angiogenesis induced by MM cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-008-0508-8DOI Listing

Publication Analysis

Top Keywords

inhibitory effects
8
effects parthenolide
8
angiogenesis induced
8
multiple myeloma
8
cells
8
myeloma cells
8
culture supernatant
8
vegf il-6
8
mmp2 mmp9
8
+/-
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!