Dopamine activates five different receptor subtypes and a complex array of intracellular signaling pathways. Rhes is a striatally expressed guanidine triphosphate-binding protein involved in dopamine signaling. Here we have used mutant mice to test whether Rhes (Ras homolog enriched in striatum) is involved in D1 and D2 dopamine receptor-mediated behaviors. Rhes was not necessary for the expression of normal D1/D2 receptor synergism, as measured by apomorphine-induced stereotypy. The stereotypic responses to D1/D2 costimulation and to D2 stimulation alone were significantly increased in mice lacking Rhes, but D1 receptor-mediated grooming was reduced in these mice. These results suggest that Rhes is normally inhibitory to behaviors induced by D1/D2 receptor costimulation and by D2 receptor stimulation alone. Rhes, however, seems to facilitate the D1-specific behavior of grooming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649821PMC
http://dx.doi.org/10.1097/WNR.0b013e3283118434DOI Listing

Publication Analysis

Top Keywords

ras homolog
8
dopamine receptor-mediated
8
involved dopamine
8
d1/d2 receptor
8
rhes
7
homolog rhes
4
dopamine
4
rhes dopamine
4
receptor-mediated behavior
4
mice
4

Similar Publications

Background: We aim to investigate efficacies of Ras homolog (Rho)-associated kinases (ROCK) inhibitors on Alzheimer's disease (AD) pathological proteins in human induced pluripotent stem cell (iPSC)-differentiated human neurons and the P301S tau transgenic mouse model (PS19).

Method: Quantitative liquid chromatography-mass spectrometry (LC-MS/MS) and targeted ELISA were implemented to investigate the effect of treatment with fasudil or its derivatives on the human neurons and brains from PS19 mice. We explored the efficacy of these ROCK inhibitors in reducing tau phosphorylation, and the brain proteomic profiles after their administration in mice.

View Article and Find Full Text PDF

Anillin interacts with RhoA to promote tumor progression in anaplastic thyroid cancer by activating the PI3K/AKT pathway.

Endocrine

December 2024

Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.

Background: Anaplastic thyroid cancer (ATC) is the most aggressive thyroid malignancy and has an extremely poor prognosis, necessitating novel therapeutic strategies. This study investigated the role of anillin (ANLN) in ATC, focusing on its impact on tumor growth and metastasis through the RhoA/PI3K/AKT signaling pathway.

Methods: TCGA and GEO datasets were analyzed to identify key molecular alterations in thyroid cancer.

View Article and Find Full Text PDF

Objective: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that emerges in early childhood and is characterized by difficulties in social communication, repetitive behaviors, and restricted interests. The Ras homolog (Rho)/Rho-kinase signaling pathway plays a critical role in maintaining synaptic structure and function, as it regulates the actin cytoskeleton. This study aims to investigate the expression of the Ras homolog (Rho) family member A (), Rho-kinase 1 (), and Rho-kinase 2 () genes within this pathway in relation to ASD.

View Article and Find Full Text PDF

Clinical Relevance and Drug Modulation of PPAR Signaling Pathway in Triple-Negative Breast Cancer: A Comprehensive Analysis.

PPAR Res

December 2024

Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China.

Triple-negative breast cancer (TNBC) is highly heterogeneous and poses a significant medical challenge due to limited treatment options and poor outcomes. Peroxisome proliferator-activated receptors (PPARs) play a crucial role in regulating metabolism and cell fate. While the association between PPAR signal and human cancers has been a topic of concern, its specific relationship with TNBC remains unclear.

View Article and Find Full Text PDF

Butyric acid (BA) can potentially enhance the function of the intestinal barrier. However, the mechanisms by which BA protects the intestinal mucosal barrier remain to be elucidated. Given that the Ras homolog gene family, member A (RhoA)/Rho-associated kinase 2 (ROCK2)/Myosin light chain kinase (MLCK) signaling pathway is crucial for maintaining the permeability of the intestinal epithelium, we further investigated whether BA exerts a protective effect on epithelial barrier function by inhibiting this pathway in LPS-induced Caco2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!