Haloesterification of diverse diols with various carboxylic acids was achieved using potassium halides (KX) as the only halide source in ionic liquids. The best yield was obtained in [BMIM][PF(6)] when 1,2-octanediol, palmitic acid and KBr were used. This yield was 85% and the regioisomer with the bromine in primary position was present in a 75:25 ratio. The regioisomeric ratio could be improved using either KCl or some phenylcarboxylic acids. [BMIM][PF(6)] acts as both reaction media and catalyst of the reaction. To the best of our knowledge, this type of combined reaction using an ionic liquid is unprecedented. The other solvents tested did not lead either to the same yield or to the same regioisomeric ratio.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.24.1341DOI Listing

Publication Analysis

Top Keywords

potassium halides
8
regioisomeric ratio
8
[bmim][pf6] promotes
4
promotes synthesis
4
synthesis halohydrin
4
halohydrin esters
4
esters diols
4
diols potassium
4
halides haloesterification
4
haloesterification diverse
4

Similar Publications

Supramolecularly Built Local Electric Field Microenvironment around Cobalt Phthalocyanine in Covalent Organic Frameworks for Enhanced Photocatalysis.

J Am Chem Soc

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

The local electric field (LEF) plays an important role in the catalytic process; however, the precise construction and manipulation of the electric field microenvironment around the active site remains a significant challenge. Here, we have developed a supramolecular strategy for the implementation of a LEF by introducing the host macrocycle 18-crown-6 (18C6) into a cobalt phthalocyanine (CoPc)-containing covalent organic framework (COF). Utilizing the supramolecular interaction between 18C6 and potassium ion (K), a locally enhanced K concentration around CoPc can be built to generate a LEF microenvironment around the catalytically active Co site.

View Article and Find Full Text PDF

Hydroalkylation of Vinylarenes by Transition-Metal-Free In Situ Generation of Benzylic Nucleophiles Using Tetramethyldisiloxane and Potassium tert-Butoxide.

Angew Chem Int Ed Engl

December 2024

Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada.

Hydrosilanes and Lewis bases are known to promote various reductive defunctionalizations, rearrangements, and silylation reactions, facilitated by enigmatic silicon/Lewis base-derived reactive intermediates. Despite the wide variety of transformations enabled by this reagent combination, no examples of intermolecular C(sp)-C(sp) forming reactions have been reported. In this work, we've identified 1,1,3,3-tetramethyldisiloxane (TMDSO) and KOBu as a unique reagent combination capable of generating benzylic nucleophiles in situ from styrene derivatives, which can subsequently react with alkyl halides to give a new C(sp)-C(sp) linkage via formal hydroalkylation.

View Article and Find Full Text PDF

Because of the unique and superior optoelectronic properties, metal halide perovskites (MHPs) have attracted great interest in photocatalysis. Element doping strategy is adopted to modify perovskite materials to improve their photocatalytic performance. However, the contribution of bare doping-site onto photocatalytic efficiency, and the correlation between doping locations and activity have not yet to be demonstrated.

View Article and Find Full Text PDF

An environmentally sustainable, versatile, and cost-effective approach for C-Se and C-X (X = I, Br, and Cl) bond formation through C-H functionalization assisted by micellar catalysis in water is developed. The reaction utilizes a minimum amount of diorganyl diselenides and potassium halides for the respective functionalizations. The present protocol was suitable for scale-up synthesis, which directly provided the desired selenylated products without the need for chromatographic purification, in sufficient purity.

View Article and Find Full Text PDF

Carbon-halogen bond cleavage in aryl halides through single electron transfer (SET) is a crucial step in radical-based cross-coupling reactions. Accomplishing such cleavage using an organic system without the assistance of any transition metal-based catalyst is highly challenging. In recent years, combining organic molecules and a base has served as a unique system for SET-mediated carbon-halogen bond cleavage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!