The effectiveness of a proposed curtain weir to be installed in the transitional zone of a eutrophic reservoir located in monsoon areas on the control of algal blooms in the lacustrine zone where drinking water withdrawals occur was assessed with various hydrodynamic flow regimes. A two-dimensional hydrodynamic and eutrophication model that can accommodate vertical displacement of the weir following the water surface changes was developed and validated using field data obtained from two distinctive hydrological years; drought (2001) and wet (2004). The model adequately reproduced the temporal and spatial variations of temperature, nutrients and phytoplankton concentrations in the reservoir. The efficacy of the curtain weir method found to be diverse for different hydrological conditions and dependent on the inflow densimetric Froude number (Fr(i)). Algal blooming was considerably mitigated by curtailing the transport of nutrients and algae from riverine zone to lacustrine epilimnion zone during the drought year as long as Fr(i) < 1.0. However, some flood events with Fr(i) > 1.0 transported nutrients and algae built upstream of the weir into the downstream euphotic zone by strong entrainments in 2004. Numerical experiments revealed that the efficiency of the weir on the control of algal blooming becomes marginal if the Fr(i) > 3.0.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2008.482DOI Listing

Publication Analysis

Top Keywords

hydrodynamic flow
8
flow regimes
8
curtain weir
8
control algal
8
algal blooming
8
nutrients algae
8
weir
5
zone
5
algal
4
regimes algal
4

Similar Publications

CFD simulation of turbulent mass transfer of HS and O in a stirring tank.

Water Sci Technol

January 2025

Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin 13355, Germany.

This study explores the computational fluid dynamics (CFD) simulation of oxygen (O) and hydrogen sulfide (HS) mass transfer in a highly turbulent stirring tank. Using the open-source software OpenFOAM, we extended three-dimensional two-phase flow solvers with a rotating mesh feature to model the mass transfer processes between the water and air phases. The accuracy of these simulations was validated against experimental data, demonstrating a strong agreement in the mass transfer rates of HS and O.

View Article and Find Full Text PDF

Cerebrospinal fluid dynamics and subarachnoid space occlusion following traumatic spinal cord injury in the pig: an investigation using magnetic resonance imaging.

Fluids Barriers CNS

January 2025

Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia.

Background: Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig.

View Article and Find Full Text PDF

Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.

View Article and Find Full Text PDF

Microfluidic chips are powerful tools for investigating numerous variables including chemical and physical parameters on protein aggregation. This study investigated the aggregation of bovine serum albumin (BSA) in two different systems: a vial-based static system and a microfluidic chip-based dynamic system in which BSA aggregation was induced successfully. BSA aggregation induced in a microfluidic chip on a timescale of seconds enabled a dynamic investigation of the forces driving the aggregation process.

View Article and Find Full Text PDF

The current chemotherapy treatments for liver cancer have shown limited effectiveness. Therefore, there is an urgent need to develop new drugs to combat this disease more effectively. This study reports synthesis of cobalt oxide nanoparticles coated with glucose, and conjugated with Ellagic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!