The hydrophobic tunnel present in LOX-1 is essential for oxidized LDL recognition and binding.

J Lipid Res

Department of Atherosclerosis Biology, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340.

Published: March 2009

Lectin-like oxidized LDL (ox-LDL) receptor-1 (LOX-1) is a type-II transmembrane protein that belongs to the C-type lectin family of molecules. LOX-1 acts as a cell surface endocytosis receptor and mediates the recognition and internalization of ox-LDL by vascular endothelial cells. Internalization of ox-LDL by LOX-1 results in a number of pro-atherogenic cellular responses implicated in the development and progression of atherosclerosis. In an effort to elucidate the functional domains responsible for the binding of ox-LDL to the receptor, a series of site-directed mutants were designed using computer modeling and X-ray crystallography to study the functional role of the hydrophobic tunnel present in the LOX-1 receptor. The isoleucine residue (I(149)) sitting at the gate of the channel was replaced by phenylalanine, tyrosine, or glutamic acid to occlude the channel opening and restrict the docking of ligands to test its functional role in the binding of ox-LDL. The synthesis, intracellular processing, and cellular distribution of all mutants were identical to those of wild type, whereas there was a marked decrease in the ability of the mutants to bind ox-LDL. These studies suggest that the central hydrophobic tunnel that extends through the entire LOX-1 molecule is a key functional domain of the receptor and is critical for the recognition of modified LDL.

Download full-text PDF

Source
http://dx.doi.org/10.1194/jlr.M800474-JLR200DOI Listing

Publication Analysis

Top Keywords

hydrophobic tunnel
12
tunnel lox-1
8
oxidized ldl
8
internalization ox-ldl
8
binding ox-ldl
8
functional role
8
lox-1
6
ox-ldl
6
lox-1 essential
4
essential oxidized
4

Similar Publications

Study on wettability of water stemming for blasting dust adjusted by surfactants and inorganic salts.

R Soc Open Sci

January 2025

State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, People's Republic of China.

Water stemming is an efficient method of removing blasting dust by wetting. There is still a lack of methods for rapid optimization of water stemming components with high wettability. Herein, blasting dust was collected from a tunnel in Chongqing (China) to investigate its removal performance by different water stemmings.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a progressive, fatal lung disease lacking effective treatments. Autotaxin (ATX) plays a crucial role in exacerbating inflammation and fibrosis, making it a promising target for fibrosis therapies. Herein, starting from PAT-409 (Cudetaxestat), a series of novel ATX inhibitors bearing 1-indole-3-carboxamide, 4,5,6,7-tetrahydro-7-pyrazolo[3,4-]pyridin-7-one, or 4,5,6,7-tetrahydro-1-pyrazolo[4,3-]pyridine cores were designed based on the structure of ATX hydrophobic tunnel.

View Article and Find Full Text PDF

Cavities in proteins perform diverse functions such as substrate binding, enzyme catalysis, passage for transportation of small molecules, and protein oligomerization. Often, the physical properties of these cavities are closely linked to the protein function; such as the hydrophobic lipid-binding cavities in lipid-binding proteins (LBPs) that protect lipid substrates from the larger aqueous milieu. Therefore, the characterization of protein cavities can provide valuable insights into protein structure-function relationships, hinting toward their mechanism of action while aiding in the identification of ligand binding sites that are essential for drug discovery approaches.

View Article and Find Full Text PDF

Carbon-based hole transport layer (HTL)-free perovskite solar cells (C-PSCs) receive a lot of attention because of their simplified preparation technology, low price, and good hydrophobicity. However, the Schottky junction formed at the interface between perovskite and carbon poles affects the photogenerated carrier extraction and conversion efficiency. In this paper, 4-trifluoromethyl-2-pyridinecarboxylic acid (TPCA) is used to modify the perovskite films.

View Article and Find Full Text PDF

Molecular Basis for Cγ-N Bond Formation by PLP-Dependent Enzyme LolC.

Biochemistry

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

Pyridoxal 5'-phosphate (PLP)-dependent enzymes catalyze a diverse array of biochemical transformations, making them invaluable biocatalytic tools for the synthesis of complex bioactive compounds. Here, we report the biochemical characterization of LolC, a PLP-dependent γ-synthase involved in the biosynthesis of loline alkaloids. LolC catalyzes the formation of a Cγ-N bond between -acetyl--homoserine (OAH) and l-proline, generating a diamino diacid intermediate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!