AI Article Synopsis

Article Abstract

Despite the low similarity between their amino acid sequences, the core structures of the fold between chicken-type and goose-type lysozymes are conserved. However, their enzymatic activities are quite different. Both of them exhibit hydrolytic activities, but the goose-type lysozyme does not exhibit transglycosylation activity. The chicken-type lysozyme has a retaining-type reaction mechanism, while the reaction mechanism of the goose-type lysozyme has not been clarified. To clarify the latter mechanism, goose egg-white lysozyme (GEL)-N-acetyl-D-glucosamine (GlcNAc)6 complexes were modelled and compared with hen egg-white lysozyme (HEL)-(GlcNAc)6 complexes. By systematic conformational search, 48 GEL-(GlcNAc)6 complexes were modelled. The right and left side, and the amino acid residues in subsites E-G were identified in GEL. The GlcNAc residue D could bind towards the right side without distortion and there was enough room for a water molecule to attack the C1 carbon of GlcNAc residue D from alpha-side in the right side and not for acceptor molecule. The result of molecular dynamics simulation suggests that GEL would be an inverting enzyme, and Asp97 would act as a second carboxylate and that the narrow space of the binding cleft at subsites E-G in GEL may prohibit the sugar chain to bind alternative site that might be essential for transglycosylation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvn133DOI Listing

Publication Analysis

Top Keywords

reaction mechanism
12
egg-white lysozyme
12
mechanism goose
8
goose egg-white
8
amino acid
8
goose-type lysozyme
8
complexes modelled
8
subsites e-g
8
glcnac residue
8
lysozyme
6

Similar Publications

Backbone resonance assignments of PhoCl, a photocleavable protein.

Biomol NMR Assign

January 2025

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.

PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Recent Advances in Radical Coupling Reactions Directly Involving Bicyclo[1.1.1]pentane (BCP).

Top Curr Chem (Cham)

January 2025

School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.

BCP (bicyclo[1.1.1]pentane) is an ideal saturated carbon bioisostere, instead of the traditional benzene group, which has been extensively developed.

View Article and Find Full Text PDF

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!