Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pluripotency is generally defined by the ability to differentiate into cell types representing all three germ layers: ectoderm, mesoderm, and endoderm. Human pluripotent stem cells hold great promise in regenerative medicine and in cell replacement therapies because of their ability to self-renew and their developmental potential to become all cell types in the body. Moreover, pluripotent cells represent a unique system in which to study the normal development of the human nervous system and the several instances where the process may fail. Here, I propose several strategies for how pluripotent stem cells, both human embryonic stem cells and induced pluripotent stem cells, can potentially be used to gain insights into the biology of temporal lobe epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yebeh.2008.09.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!