Annexin A1 (ANXA1, formerly termed lipocortin 1 or macrocortin) is an important protein mediator of the feedback actions of glucocorticoids within the hypothalamo-pituitary-adrenocortical (HPA) axis. Here we consider the mechanisms by which ANXA1 exerts these actions, with particular reference to the potential role of the formyl peptide receptors (FPRs), a family of G-protein-coupled receptors which has only very recently been implicated in the regulation of neuroendocrine function. In addition, we discuss evidence that ANXA1 contributes to the regulation of other aspects of endocrine and metabolic function and to the aetiology of sexual dimorphisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.coph.2008.09.005 | DOI Listing |
Mol Med
January 2025
Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
Background: Acute rejection (AR) is one of the significant factors contributing to poor prognosis in patients following kidney transplantation. Neutrophils are the main cause of early host-induced tissue injury. This paper intends to investigate the possible mechanisms of neutrophil involvement in acute rejection in renal transplantation.
View Article and Find Full Text PDFJ Leukoc Biol
January 2025
Department of Surgery, University of California, San Diego Health, San Diego, CA, USA.
Pediatric intensive care patients are particularly susceptible to severe bacterial infections because of ineffective neutrophil responses. The reasons why neutrophils of newborns are less responsive than those of adults are not clear. Because adenosine triphosphate (ATP) and adenosine (ADO) tightly regulate neutrophils, we studied whether the ATP and ADO levels in the blood of newborn mice could impair the function of their neutrophils.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Department of Gynecologic and Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, Hubei, China.
One kind of hydroxycinnamic acid is calceolarioside A. Plantago coronopus, Cassinopsis madagascariensis, and other organisms for whom data are available are known to have this naturally occurring compound. IC50 values of Calceolarioside A for ovarian cell lines (NIH-OVCAR-3, ES-2, UACC-1598, Hs832.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
Site-selective cleavage of the peptide backbone in proteins is an important class of post-translational modification (PTM) in nature. However, the organic chemistry for such site-selective peptide bond cleavages has yet to be fully explored. Herein, we report cysteine -formylation as a means of selective protein backbone cleavage.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
Domino Knoevenagel-cyclization reactions of styrene substrates, containing an -(-formyl)aryl subunit, were carried out with -substituted 2-cyanoacetamides to prepare tetrahydro-4-pyrano[3,4-]quinolone and hexahydrobenzo[]phenanthridine derivatives by competing IMHDA and IMSDA cyclization, respectively. The diastereoselective IMHDA step with α,β-unsaturated amide, thioamide, ester and ketone subunits as a heterodiene produced condensed chiral tetrahydropyran or thiopyran derivatives, which in the case of Meldrum's acid were reacted further with amine nucleophiles in a multistep domino sequence. In order to simplify the benzene-condensed tricyclic core of the targets and get access to hexahydro-1-pyrano[3,4-]pyridine derivatives, a truncated substrate was reacted with cyclic and acyclic active methylene reagents in diastereoselective Knoevenagel-IMHDA reactions to prepare novel condensed heterocyclic scaffolds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!