Many breast cancer cells typically exhibit lower expression of manganese superoxide dismutase (MnSOD) compared to the normal cells from which they arise. This decrease can often be attributed to a defect in the transcription of SOD2, the gene encoding MnSOD; however, the mechanism responsible for this change remains unclear. Here, we describe how altered histone modifications and a repressive chromatin structure constitute an epigenetic process to down regulate SOD2 in human breast carcinoma cell lines. Utilizing chromatin immunoprecipitation (ChIP) we observed decreased levels of dimethyl H3K4 and acetylated H3K9 at key regulatory elements of the SOD2 gene. Consistent with these results, we show that loss of these histone modifications creates a repressive chromatin structure at SOD2. Transcription factor ChIP experiments revealed that this repressive chromatin structure influences the binding of SP-1, AP-1, and NFkappaB to SOD2 regulatory cis-elements in vivo. Lastly, we show that treatment with the histone deacetylase inhibitors trichostatin A and sodium butyrate can reactivate SOD2 expression in breast cancer cell lines. Taken together, these results indicate that epigenetic silencing of SOD2 could be facilitated by changes in histone modifications and represent one mechanism leading to the altered expression of MnSOD observed in many breast cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633123 | PMC |
http://dx.doi.org/10.1016/j.freeradbiomed.2008.09.005 | DOI Listing |
Epigenetics
December 2025
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of followed by mutations in epigenetic regulators , , and . Mutations in , a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming.
View Article and Find Full Text PDFLife Med
August 2024
Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi'an, Shaanxi 710032, China.
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition, characterized by a spectrum that progresses from simple hepatic steatosis to nonalcoholic steatohepatitis, which may eventually lead to cirrhosis and hepatocellular carcinoma. The precise pathogenic mechanisms underlying NAFLD and its related metabolic disturbances remain elusive. Epigenetic modifications, which entail stable transcriptional changes without altering the DNA sequence, are increasingly recognized as pivotal.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.
View Article and Find Full Text PDFLife Metab
April 2024
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
Isocitrate dehydrogenase (IDH) mutations frequently occur in lower-grade gliomas and secondary glioblastomas. Mutant IDHs exhibit a gain-of-function activity, leading to the production of D-2-hydroxyglutarate (D-2HG) by reducing α-ketoglutarate (α-KG), a central player in metabolism and epigenetic modifications. However, the role of α-KG homeostasis in IDH-mutated gliomagenesis remains elusive.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China.
Background: Lower-grade glioma (LGG) exhibits significant heterogeneity in clinical outcomes, and current prognostic markers have limited predictive value. Despite the growing recognition of histone modifications in tumor progression, their role in LGG remains poorly understood. This study aimed to develop a histone modification-based risk signature and investigate its relationship with drug sensitivity to guide personalized treatment strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!