Costimulation blockade in transplantation of nerve allografts: long-term effects.

J Peripher Nerv Syst

Department of Clinical Sciences/Hand Surgery, Malmö University Hospital, Malmö, Sweden.

Published: September 2008

Costimulation blockade can prevent rejection of nerve allografts in short-term studies. We tested if costimulation blockade also prevented rejection of nerve allografts in long-term experiments, thereby improving functional recovery. A 7-mm sciatic nerve defect in C57/BL6 mice was bridged either by nerve allografts from Balb/C mice or by isogenic nerve grafts (isografts) from C57/BL6 mice. Costimulation blockade in the form of a triple treatment with anti-LFA-1, anti-CD40L, and CTLA4Ig was given at post-operative days 0, 2, 4, and 6 (intraperitoneal). Control mice (placebo; allografts) with nerve grafts were treated with isotype antibodies during the same time period. After 49 days, tetanic muscle force, wet weight of gastrocnemius muscle, histology, and morphometry in the tibial nerve were evaluated. Costimulation blockade diminished rejection of the nerve allografts. Axons bridged the graft. Treatment increased wet weight of the gastrocnemius muscle and resulted in a higher mean myelin area/nerve fiber in the tibial nerve distal to the nerve grafts. Tetanic muscle force and number of axons in tibial nerve showed no differences between groups. We conclude that rejection is suppressed by costimulation blockade. Treatment improves recovery of target muscle and myelination after nerve allografting.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1529-8027.2008.00178.xDOI Listing

Publication Analysis

Top Keywords

costimulation blockade
24
nerve allografts
20
nerve
13
rejection nerve
12
nerve grafts
12
tibial nerve
12
allografts long-term
8
c57/bl6 mice
8
tetanic muscle
8
muscle force
8

Similar Publications

Intratumoral Injection of Engineered Induces Antitumor Immunity and Inhibits Tumor Growth.

Biomater Res

January 2024

The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.

Conventional type 1 dendritic cells are essential for antigen presentation and successful initiation of antitumor CD8 T cells. However, their abundance and function within tumors tend to be limited. , a fast-growing, nonpathogenic mycobacterium, proves to be easily modified with synthetic biology.

View Article and Find Full Text PDF

Following our previous experience with cardiac xenotransplantation of a genetically modified porcine heart into a live human, we sought to achieve improved results by selecting a healthier recipient and through more sensitive donor screening for potential zoonotic pathogens. Here we transplanted a 10-gene-edited pig heart into a 58-year-old man with progressive, debilitating inotrope-dependent heart failure due to ischemic cardiomyopathy who was not a candidate for standard advanced heart failure therapies. He was maintained on a costimulation (anti-CD40L, Tegoprubart) blockade-based immunomodulatory regimen.

View Article and Find Full Text PDF

Background: Improvement in gene modifications of donor pigs has led to the prevention of early cardiac xenograft rejection and significantly prolonged cardiac xenograft survival in both heterotopic and orthotopic preclinical non-human primate (NHP) models. This progress formed the basis for FDA approval for compassionate use transplants in two patients.

Methods: Based on our earlier report of 9-month survival of seven gene-edited (7-GE) hearts transplanted (life-supporting orthotopic) in baboons, we transplanted 10 gene-edited pig hearts into baboons (n = 4) using non-ischemic continuous perfusion preservation (NICP) and immunosuppression regimen based on co-stimulation blockade by anti-CD40 monoclonal antibody.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors targeting programmed cell death protein-1 (PD-1) are the first line of treatment for many solid tumors including melanoma. PD-1 blockade enhances the effector functions of melanoma-infiltrating CD8 T cells, leading to durable tumor remissions. However, 55% of patients with melanoma do not respond to treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in cancer immunotherapy face challenges with patient resistance and relapses, prompting exploration of bispecific antibodies like NI-3201, designed to enhance T-cell activation against tumors.
  • NI-3201 works by blocking the PD-L1/PD-1 pathway and providing additional T-cell stimulation through CD28, showing promising in vitro and in vivo results for tumor regression and immune memory.
  • Preclinical safety assessments indicate good tolerability, and future studies aim to further investigate NI-3201's potential in improving outcomes for patients with PD-L1+ solid tumors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!