How the surrounding water changes the electronic and magnetic properties of DNA.

J Phys Chem B

Department of Physics and Astronomy, The University of Manitoba, Winnipeg, Canada.

Published: November 2008

We study the influence of humidity on the transport and magnetic properties of DNA within the quantum chemistry methods. Strong influence of water molecules on these properties, observed in this study, opens up opportunities for application of DNA in molecular electronics. Interaction of the nucleobases with water molecules leads to breaking of some of the pi bonds and appearance of unbound pi electrons. These unbound electrons contribute significantly to the charge transfer at room temperature by up to 10(3) times, but at low temperature the efficiency of charge transfer is determined by the spin interaction of two unbound electrons located on the intrastrand nucleobases. The charge exchange between the nucleobases is allowed only when the spins of unbound electrons are antiparallel. Therefore, the conductance of DNA molecule can be controlled by a magnetic field. That effect has potentials for applications in developing nanoscale spintronic devices based on the DNA molecule, where efficiency of spin interaction will be determined by the DNA sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp806143xDOI Listing

Publication Analysis

Top Keywords

unbound electrons
16
magnetic properties
8
properties dna
8
water molecules
8
charge transfer
8
spin interaction
8
dna molecule
8
dna
6
surrounding water
4
water changes
4

Similar Publications

The γ-carboxylation of glutamate residues enables Ca-mediated membrane assembly of protein complexes that support broad physiological functions including hemostasis, calcium homeostasis, immune response, and endocrine regulation. Modulating γ-carboxylation level provides prevalent treatments for hemorrhagic and thromboembolic diseases. This unique posttranslational modification requires vitamin K hydroquinone (KH) to drive highly demanding reactions catalyzed by the membrane-integrated γ-carboxylase (VKGC).

View Article and Find Full Text PDF

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

Effects of Nicotine on the Thermodynamics and Phase Coexistence of Pulmonary Surfactant Model Membranes.

Membranes (Basel)

December 2024

Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil.

Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine's effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture.

View Article and Find Full Text PDF

Disulfide-Directed Multicyclic Peptides with N-Terminally Extendable α-Helices for Recognition and Activation of G Protein-Coupled Receptors.

J Am Chem Soc

December 2024

The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Many peptide hormones adopt long α-helical structures upon interacting with their cognate receptors but often exhibit flexible conformations when unbound. Strategies that can stabilize long α-helices without disrupting their binding to receptors are still lacking, which hinders progress in their biological applications and drug development. Here, we present an approach that combines rational design with library screening to create and identify a unique disulfide-directed multicyclic peptide (DDMP) scaffold, which could effectively stabilize N-terminally extendable α-helices while displaying exceptional efficiency in disulfide pairing and oxidative folding.

View Article and Find Full Text PDF

Thallium-201 is an Auger electron-emitting radionuclide with significant potential for targeted molecular radiotherapy of cancer. It stands out among other Auger electron emitters by releasing approximately 37 Auger and Coster-Kronig electrons per decay, which is one of the highest numbers in its category. It has also a convenient half-life of 73 h, a stable daughter product, established production methods, and demonstrated high radiotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!