Recent studies of galaxies approximately 2-3 Gyr after the Big Bang have revealed large, rotating disks, similar to those of galaxies today. The existence of well-ordered rotation in galaxies during this peak epoch of cosmic star formation indicates that gas accretion is likely to be the dominant mode by which galaxies grow, because major mergers of galaxies would completely disrupt the observed velocity fields. But poor spatial resolution and sensitivity have hampered this interpretation; such studies have been limited to the largest and most luminous galaxies, which may have fundamentally different modes of assembly from those of more typical galaxies (which are thought to grow into the spheroidal components at the centres of galaxies similar to the Milky Way). Here we report observations of a typical star-forming galaxy at z = 3.07, with a linear resolution of approximately 100 parsecs. We find a well-ordered compact source in which molecular gas is being converted efficiently into stars, likely to be assembling a spheroidal bulge similar to those seen in spiral galaxies at the present day. The presence of undisrupted rotation may indicate that galaxies such as the Milky Way gain much of their mass by accretion rather than major mergers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature07294 | DOI Listing |
Microbial research generates vast and complex data from diverse omics technologies, necessitating innovative analytical solutions. microGalaxy (Galaxy for Microbiology) addresses these needs with a user-friendly platform that integrates 220+ tool suites and 65+ curated workflows for microbial analyses, including taxonomic profiling, assembly, annotation, and functional analysis. Hosted on the main EU Galaxy server (microgalaxy.
View Article and Find Full Text PDFJ Reprod Dev
December 2024
Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan.
In the future, human beings will surely expand into space. But given its unique risks, will humanity thrive in space environments? For example, when humans begin living and reproducing in space habitats or on other planets in the solar system, are there risks that future generations may suffer from adverse mutations induced by space radiation, or that embryos and fetuses will develop abnormally in gravitational environments that differ from that of Earth? Moreover, human expansion to other stellar systems requires that for each breed of animal, thousands of individuals must be transported to destination planets to prevent populations from experiencing inbreeding-related degeneration. In even more distant future, when humans have spread throughout the galaxy, all genetic resources on Earth, the planet where humans originated, must be permanently and safely stored- but is this even possible? Such issues with future space colonization may not be an urgent research priority, but research and technological development accompanying advancements in spaceflight will excite many people and contribute to technological improvements that can improve living standards in the present day (e.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom.
Phys Rev Lett
December 2024
Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland.
We performed the first simulations of accretion onto the compact objects in the Reissner-Nordström (RN) space-time. The results obtained in general relativity are representative of those for spherically symmetric naked singularities and black holes in a number of modified gravity theories. A possible application of these calculations is to the active galactic nuclei with their powerful jets and outflows.
View Article and Find Full Text PDFNature
January 2025
Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!