An atomic force microscope was used so as to structure by nanofriction films of polynitrophenylene electrografted on substrates of n-type silicon (100) with the native oxide on the top of the surface. AFM measurements of thin films thickness have been carried out in the electrolytic solution for different applied potentials during the electrografting. This investigation allows (i) to determine the relationship between the applied potential and the final thickness of electrografted polyphenylene films and (ii) to specify how the thin layers grow. XPS analysis confirmed the AFM observations on (i) the effective shaving of the grafted polymer chains under mechanical stress and (ii) the existence of a potential threshold for electrografting a polyphenylene film on silicon oxide surfaces. The presence of a residual film in the rubbed zone was attributed to stronger interactions between the first electrografted layer and the native oxide of silicon (through Si-C or/and Si-O-C bonds) than those insuring the cohesion of the multilayer (C-C and C-N bonds).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2008.09.033DOI Listing

Publication Analysis

Top Keywords

electrografted polyphenylene
8
polyphenylene films
8
native oxide
8
situ characterization
4
characterization structuring
4
electrografted
4
structuring electrografted
4
films
4
silicon
4
films silicon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!