Capillary gas chromatography (CGC) in combination with mass spectrometry (MS) was optimized for the separation and detection of the fatty acids occurring in the lipid fraction of blood. A fingertip blood sample (ca. 50 microL) was transesterified into the methyl esters and analyzed on a 100 m x 0.25 mm ID column coated with a biscyanopropyl polysiloxane (HP-88) stationary phase. The method was retention time locked. Programmed temperature vaporization injection (PTV) in the solvent venting mode was applied to minimize the sample size, while maintaining high sensitivity. The total analysis time was ca. 60 min. Retention times and both electron impact (EI) and positive chemical ionization (PCI) mass spectrometry were combined to elucidate the fatty acids according to alkyl chain, degree of unsaturation and position of the double bonds. Using extracted ion chromatograms about 100 fatty acids and related compounds were detected in blood samples and most of them were identified. This work resulted in a very large fatty acid methyl esters database, containing retention time and mass spectral information that will be applied to metabolomic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2008.09.066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!