Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
AMPK (AMP-activated protein kinase) has been suggested to be a central player regulating FA (fatty acid) metabolism through its ability to regulate ACC (acetyl-CoA carboxylase) activity. Nevertheless, its involvement in insulin resistance- and TD2 (Type 2 diabetes)-associated dyslipidaemia remains enigmatic. In the present study, we employed the Psammomys obesus gerbil, a well-established model of insulin resistance and TD2, in order to appreciate the contribution of the AMPK/ACC pathway to the abnormal hepatic lipid synthesis and increased lipid accumulation in the liver. Our investigation provided evidence that the development of insulin resistance/diabetic state in P. obesus is accompanied by (i) body weight gain and hyperlipidaemia; (ii) elevations of hepatic ACC-Ser79 phosphorylation and ACC protein levels; (iii) a rise in the gene expression of cytosolic ACC1 concomitant with invariable mitochondrial ACC2; (iv) an increase in hepatic AMPKalpha-Thr172 phosphorylation and protein expression without any modification in the calculated ratio of phospho-AMPKalpha to total AMPKalpha; (v) a stimulation in ACC activity despite increased AMPKalpha phosphorylation and protein expression; and (vi) a trend of increase in mRNA levels of key lipogenic enzymes [SCD-1 (stearoyl-CoA desaturase-1), mGPAT (mitochondrial isoform of glycerol-3-phosphate acyltransferase) and FAS (FA synthase)] and transcription factors [SREBP-1 (sterol-regulatory-element-binding protein-1) and ChREBP (carbohydrate responsive element-binding protein)]. Altogether, our findings suggest that up-regulation of the AMPK pathway seems to be a natural response in order to reduce lipid metabolism abnormalities, thus supporting the role of AMPK as a promising target for the treatment of TD2-associated dyslipidaemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BSR20080141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!