Mutations in STAT3 (signal transducer and activator of transcription 3) have recently been found to cause the hyper-IgE syndrome (HIES) - a rare immunodeficiency syndrome including complex somatic features. We now tested whether STAT3 mutations or single-nucleotide polymorphisms (SNPs) within STAT3 may be responsible for increased IgE levels in asthmatic children. We genotyped DNA samples from 918 individuals of 217 core families by MALDI-TOF mass spectrometry. SNPs were selected from previous reports, by functional relevance and haplotype-tagging capacity. In 24 assays, including the recently described HIES mutations, no variant was detected. In another 27 SNP assays, there was no association of any STAT3 variant with asthma, allergic rhinitis or eczema. In addition, neither total and specific IgE and eosinophil count nor any lung function parameter showed any significant association. When combining high eosinophil counts and high total IgE levels to an HIES-like trait, four SNPs in the 5'-UTR of STAT3 were slightly overtransmitted. A minor fraction of asthmatic children may possibly have an alternate STAT3 promoter architecture influencing joined IgE and eosinophil upregulation. While an overall effect of STAT3 mutations on serum IgE is unlikely in asthma children.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2986162 | PMC |
http://dx.doi.org/10.1038/ejhg.2008.169 | DOI Listing |
Cell Death Dis
January 2025
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
Prostate cancer is a heterogeneous disease with a slow progression and a highly variable clinical outcome. The tumor suppressor genes PTEN and TP53 are frequently mutated in prostate cancer and are predictive of early metastatic dissemination and unfavorable patient outcomes. The progression of solid tumors to metastasis is often associated with increased cell plasticity, but the complex events underlying TP53-loss-induced disease aggressiveness remain incompletely understood.
View Article and Find Full Text PDFCancer Lett
January 2025
Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria. Electronic address:
Acute myeloid leukemia (AML) is the most common acute leukemia and is predominantly affecting older patients. It is a heterogenous disease, showing a broad spectrum of genomic alterations and mutations that influence the clinical outcome and treatment options. The expression of the signal transducer and activator of transcription 3 (STAT3) is often dysregulated in AML and its constitutive activation is associated with poor outcome.
View Article and Find Full Text PDFBr J Cancer
January 2025
University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.
Background: Emerging evidence suggests that non-coding somatic single nucleotide variants (SNVs) in cis-regulatory elements (CREs) contribute to cancer by disrupting gene expression networks. However, the role of non-coding SNVs in cancer, particularly neuroblastoma, remains largely unclear.
Methods: SNVs effect on CREs activity was evaluated by luciferase assays.
Biomed Pharmacother
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Avda. Libertador 80, Mendoza CP5500, Argentina. Electronic address:
A hypertonic solution of Ibuprofen (Ibu) was designed to nebulize, associating a low concentration of Ibu with L-Arginine (AR), to increase solubility and serve as a nitric oxide donor. To provide preclinical research human bronchial epithelial cells derived from a cystic fibrosis patient homozygous for the ΔF508 CFTR mutation (CFBE41o-) and mouse RAW 264.7 macrophages were pre-treated with Ibu (10-100 μM), AR (20 and 200 μM), or the combination Ibu-AR (10-100 μM).
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address:
Heterozygous mutations in IDH1 (isocitrate dehydrogenase 1) are found in most grade II and III brain tumors. A slew of mutant IDH1 inhibitors were identified soon after the discovery of IDH1 mutations in brain tumors. But recent reports show that mutant IDH1 inhibitors reverse therapeutic vulnerabilities and activate the oncogenic transcription factor STAT3 in mutant IDH1-expressing cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!