The objective of this study was to develop a computing tool for full-automatic segmentation of body fat distributions on volumetric CT images. We developed an algorithm to automatically identify the body perimeter and the inner contour that separates visceral fat from subcutaneous fat. Diaphragmatic surfaces can be extracted by model-based segmentation to match the bottom surface of the lung in CT images for determination of the upper limitation of the abdomen. The functions for quantitative evaluation of abdominal obesity or obesity-related metabolic syndrome were implemented with a prototype three-dimensional (3D) image processing workstation. The volumetric ratios of visceral fat to total fat and visceral fat to subcutaneous fat for each subject can be calculated. Additionally, color intensity mapping of subcutaneous areas and the visceral fat layer is quite obvious in understanding the risk of abdominal obesity with the 3D surface display. Preliminary results obtained have been useful in medical checkups and have contributed to improved efficiency in checking obesity throughout the whole range of the abdomen with 3D visualization and analysis.

Download full-text PDF

Source
http://dx.doi.org/10.6009/jjrt.64.1177DOI Listing

Publication Analysis

Top Keywords

visceral fat
16
fat
9
body fat
8
fat subcutaneous
8
subcutaneous fat
8
abdominal obesity
8
development automated
4
automated segmentation
4
segmentation program
4
program volume
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!