Background: Altered IgA1 galactosylation is involved in the pathogenesis of IgA nephropathy (IgAN). The galactosyltransferase core-1 beta3-galactosyltransferase-1 (C1GALT1) and its chaperone cosmc are specifically required for O-galactosylation of the IgA1 hinge region. Mutations in the cosmc gene result in a secondary loss of function of C1GALT1 with subsequent undergalactosylation of glycoproteins. Mosaic mutations of cosmc have been shown to result in autoimmune disease. We hypothesized that cosmc mutations might contribute to the altered IgA1 galactosylation in IgAN patients.
Methods: We studied cosmc gene sequences in genomic DNA obtained from male patients with biopsy-proven sporadic (n = 33) and familial IgAN (n = 6 patients from different families). To account for a potential mosaicism we sequenced cosmc in 10 different peripheral blood mononuclear cell DNA clones of every patient. To specifically assess potential mosaic mutations in IgA-producing cells, cosmc mutations were also analysed in DNA isolated from CD20+ B-lymphocytes from three male IgAN patients.
Results: Despite our extensive genomic analysis, the data revealed no functionally relevant cosmc gene variants in sporadic or familial IgAN cases. A cosmc gene polymorphism, rs17261572, was identified in these IgAN patients in a similar frequency as previously reported in healthy adults. A functional consequence of this polymorphism has not yet been determined.
Conclusion: Although decreased C1GALT1 activity has been implicated in the IgAN pathogenesis and cosmc chaperone mutations can cause autoimmune disease, our data provide no evidence for a relevant role of cosmc gene mutations in European patients with sporadic or familial IgAN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ndt/gfn538 | DOI Listing |
J Cell Mol Med
December 2024
Department of Gynecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
PeerJ
January 2024
School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
Background: Changes in protein glycosylation have been reported in various diseases, including cancer; however, the consequences of altered glycosylation in meningiomas remains undefined. We established two benign meningioma cell lines-SUT-MG12 and SUT-MG14, WHO grade I-and demonstrated the glycan and glycosyltransferase profiles of the mucin-type O-linked glycosylation in the primary benign meningioma cells compared with two malignant meningioma cell lines-HKBMM and IOMM-Lee, WHO grade III. Changes in O-linked glycosylation profiles in malignant meningiomas were proposed.
View Article and Find Full Text PDFStem Cell Res Ther
May 2023
Department of Immunology, Binzhou Medical University, Yantai, 264003, People's Republic of China.
Background: Cosmc (C1GalT1C1) mutation could cause aberrant O-glycosylation and result in expression of Tn antigen on the surface of tumor cells (Tn cells), which is associated with the metastasis and prognosis of cancer progression. Mesenchymal stem cells (MSCs) could participate in immunoregulation, tissue damage repair, and tumor inhibition and be seen as an ideal candidate for tumor therapy due to their inherent capacity to migrate to tumor sites. However, their therapeutic effectiveness in different tumors is inconsistent and still controversial.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2023
Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany.
Mutations in genes encoding molecular chaperones can lead to chaperonopathies, but none have so far been identified causing congenital disorders of glycosylation. Here we identified two maternal half-brothers with a novel chaperonopathy, causing impaired protein O-glycosylation. The patients have a decreased activity of T-synthase (), an enzyme that exclusively synthesizes the T-antigen, a ubiquitous O-glycan core structure and precursor for all extended O-glycans.
View Article and Find Full Text PDFGlycobiology
October 2023
Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
Introduction: In epithelial cancers, truncated O-glycans, such as the Thomson-nouveau antigen (Tn) and its sialylated form (STn), are upregulated on the cell surface and associated with poor prognosis and immunological escape. Recent studies have shown that these carbohydrate epitopes facilitate cancer development and can be targeted therapeutically; however, the mechanism underpinning their expression remains unclear.
Methods: To identify genes directly influencing the expression of cancer-associated O-glycans, we conducted an unbiased, positive-selection, whole-genome CRISPR knockout-screen using monoclonal antibodies against Tn and STn.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!