Reproductive hormone secretions are inhibited by fasting and restored by feeding. Metabolic signals mediating these effects include fluctuations in serum glucose, insulin, and leptin. Because ATP-sensitive potassium (K(ATP)) channels mediate glucose sensing and many actions of insulin and leptin in neurons, we assessed their role in suppressing LH secretion during food restriction. Vehicle or a K(ATP) channel blocker, tolbutamide, was infused into the lateral cerebroventricle in ovariectomized mice that were either fed or fasted for 48 h. Tolbutamide infusion resulted in a twofold increase in LH concentrations in both fed and fasted mice compared with both fed and fasted vehicle-treated mice. However, tolbutamide did not reverse the suppression of LH in the majority of fasted animals. In sulfonylurea (SUR)1-null mutant (SUR1(-/-)) mice, which are deficient in K(ATP) channels, and their wild-type (WT) littermates, a 48-h fast was found to reduce serum LH concentrations in both WT and SUR(-/-) mice. The present study demonstrates that 1) blockade of K(ATP) channels elevates LH secretion regardless of energy balance and 2) acute fasting suppresses LH secretion in both SUR1(-/-) and WT mice. These findings support the hypothesis that K(ATP) channels are linked to the regulation of gonadotropin-releasing hormone (GnRH) release but are not obligatory for mediating the effects of fasting on GnRH/LH secretion. Thus it is unlikely that the modulation of K(ATP) channels either as part of the classical glucose-sensing mechanism or as a component of insulin or leptin signaling plays a major role in the suppression of GnRH and LH secretion during food restriction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2603549 | PMC |
http://dx.doi.org/10.1152/ajpendo.90615.2008 | DOI Listing |
J Cereb Blood Flow Metab
January 2025
Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA.
Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (K) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli.
View Article and Find Full Text PDFFunction (Oxf)
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
The ATP-sensitive potassium (KATP) channels, composed of Kir6.2 and SUR1 subunits, are essential for glucose homeostasis. While the role of pancreatic KATP channels in regulating insulin secretion is well-documented, the specific contributions of neuronal KATP channels remain unclear due to challenges in precisely targeting neuronal subpopulations.
View Article and Find Full Text PDFCell Calcium
January 2025
Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA. Electronic address:
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter, United Kingdom.
Introduction: Congenital Hyperinsulinism (CHI) has not been previously studied in Ukraine. We therefore aimed to elucidate the genetics, clinical phenotype, histological subtype, treatment and long-term outcomes of Ukrainian patients with CHI.
Methods: Forty-one patients with CHI were recruited to the Ukrainian national registry between the years 2014-2023.
Am J Physiol Heart Circ Physiol
December 2024
Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
Missense mutations in calmodulin (CaM)-encoding genes are associated with life-threatening ventricular arrhythmia syndromes. Here, we investigated a role of cardiac K channel dysregulation in arrhythmogenic long QT syndrome (LQTS) using a knock-in mouse model heterozygous for a recurrent mutation (p.N98S) in the gene (Calm1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!