Bcl-2 interacting cell death suppressor (Bis), also known as Bag3 or CAIR-1, is involved in antistress and antiapoptotic pathways. In addition to Bcl-2, Bis binds to several proteins, suggesting it has diverse functions in normal and pathological conditions. To better define the physiological function of Bis in vivo, we developed bis-deficient mice with a cre-loxP system. Targeted disruption of exon 4 of the bis gene was demonstrated by Southern blotting and PCR, and Western blotting showed that no intact or truncated Bis protein was synthesized in bis(-/-) mice. While heterozygotes were fertile and appeared normal, Bis-deficient mice showed growth retardation and died by 3 wk after birth. The relative weight of the thymus and spleen was reduced and the total numbers of white blood cells, splenocytes, and thymocytes were significantly reduced compared with wild-type littermates. Serum profiles indicated significant hypoglycemia as well as decrease in triglyceride and cholesterol levels. Expression profiles of metabolic genes indicated that gluconeogenesis and beta-oxidation are activated in the liver of bis(-/-) mice. This activation, as well as a decrease in peripheral fat and an induction of fatty liver, appears to be an adaptive response to hypoglycemia. Our study reveals that the absence of Bis has considerable influences on postnatal growth and survival, possibly due to a nutritional impairment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.90704.2008 | DOI Listing |
Anat Cell Biol
September 2012
Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul, Korea.
The Bcl-2 interacting death suppressor (Bis) protein is known to be involved in a variety of pathophysiological conditions. We recently generated bis-deficient mice, which exhibited early lethality with typical nutritional deprivation status. To further investigate the molecular basis for the malnutrition phenotype of bis deficient mice, we explored Bis expression in the digestive system of normal mice.
View Article and Find Full Text PDFGlia
December 2012
Department of Pharmacology, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea.
The Bcl-2-interacting death suppressor (Bis) protein is involved in antiapoptosis and antistress pathways. However, its roles after neonatal hypoxia-ischemia remain obscure. Therefore, we investigated the effects of Bis deletion on hippocampal cell death following neonatal hypoxia-ischemia.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2008
Department of Biochemistry, Catholic University of Korea, Korea.
Bcl-2 interacting cell death suppressor (Bis), also known as Bag3 or CAIR-1, is involved in antistress and antiapoptotic pathways. In addition to Bcl-2, Bis binds to several proteins, suggesting it has diverse functions in normal and pathological conditions. To better define the physiological function of Bis in vivo, we developed bis-deficient mice with a cre-loxP system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!