After the comprehensive consideration of the effects of temperature and light on the development physiology of processing tomato, the intrinsic development factor (IDF) was introduced, and, through the analysis of the dynamic relationships between the development stages of different type processing tomato and related environmental factors, the simulation model for the development stages of processing tomato was constructed, based on the concept of physiological development time (PDTv). Different years' experimental data about ecological zones, varieties, and planting modes were used to validate the model. The simulated results about the number of days from sowing to seedling emergence, flowering, fruit-setting, maturing, and ending accorded well with the observed ones, the root mean squared error (RMSE) being 1.09, 2.03, 2.05, 2.77 and 2.53 days, respectively, and the prediction accuracy of this model was significantly higher than that of the growth degree day (GDD)-based model, with the corresponding RMSE being 1.90, 6.63, 6.33, 9.36 and 6.84 days, respectively.
Download full-text PDF |
Source |
---|
BMC Plant Biol
December 2024
Natural Products Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
Background: Fresh vegetables are commodities that have a high tendency to deteriorate after harvest, causing significant losses in economic and environmental costs associated with plant food loss. Therefore, this study was carried out to evaluate the effects of both un-irradiated (UISA) and irradiated sodium alginate (ISA) as an edible coating for preserving cherry tomato fruits under storage conditions. The FTIR, XRD, TGA, SEM, and TEM were used to characterize the UISA and ISA (25, 50, 75, and 100 kGy), which demonstrated that the alginate polymer was degraded and low molecular-weight polysaccharides were formed as a result of irradiation, particularly with the 100 kGy dose level.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America.
Cellular responses to biotic stress frequently involve signaling pathways that are conserved across eukaryotes. These pathways include the cytoskeleton, a proteinaceous network that senses external cues at the cell surface and signals to interior cellular components. During biotic stress, dynamic cytoskeletal rearrangements serve as a platform from which early immune-associated processes are organized and activated.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain.
Arbuscular mycorrhiza (AM) represents a symbiotic mutualistic association between most land plants and fungi. AM fungi develops specialized intraradical and highly branched structures, called arbuscules, where bidirectional exchange of nutrients between plant and fungi partners occurs, improving plant growth and fitness. Transcriptional reprogramming and hormonal regulation are necessary for the formation of the arbuscules.
View Article and Find Full Text PDFSci Data
December 2024
Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
The South American tomato pinworm, Tuta absoluta (Meyrick) is a newly emerged invasive pests causing devastating loss on tomato production globally. Semiochemical-based management is a promising method for controlling this pest. However, there is little known about how T.
View Article and Find Full Text PDFPlant Commun
December 2024
Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China,. Electronic address:
Epitranscriptomic chemical modifications of RNAs have emerged as potent regulatory mechanisms in the plant stress adaptation process. Currently, over 170 distinct chemical modifications have been identified in mRNAs, tRNAs, rRNAs, microRNAs (miRNAs), and long-noncoding RNAs (lncRNAs). The genetic and molecular studies have identified the genes responsible for adding and removing chemical modifications on RNA molecules, known as "writers" and "erasers," respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!