Planarian is among the simplest animals that possess a centralized nervous system (CNS), and its neural regeneration involves the replacement of cells lost to normal 'wear and tear' (cell turnover), and/or injury. In this review, we state and discuss the recent studies on molecular control of neural regeneration in planarians. The spatial and temporal expression patterns of genes in intact and regenerating planarian CNS have already been described relatively clearly. The bone morphogenetic protein (BMP) and Wnt signaling pathways are identified to regulate neural regeneration. During neural regeneration, conserved axon guidance mechanisms are necessary for proper wiring of the nervous system. In addition, apoptosis may play an important role in controlling cell numbers, eliminating unnecessary tissues or cells and remodeling the old tissues for regenerating CNS. The bilateral symmetry is established by determination of anterior-posterior (A-P) and dorsal-ventral (D-V) patterns. Moreover, neurons positive to dopamine, serotonin (5-HT), and gamma-aminobutyric acid (GABA) have been detected in planarians. Therefore, planarians present us with new, experimentally accessible contexts to study the molecular actions guiding neural regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552533 | PMC |
http://dx.doi.org/10.1007/s12264-008-0610-8 | DOI Listing |
Nature
January 2025
The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
The development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
Chronic neuroinflammation with sustained microglial activation occurs in Parkinson's disease (PD), yet the mechanisms and exact contribution of these cells to the neurodegeneration remains poorly understood. In this study, we induced progressive dopaminergic neuron loss in mice via rAAV-hSYN injection to cause the neuronal expression of α-synuclein, which produced neuroinflammation and behavioral alterations. We administered PLX5622, a colony-stimulating factor 1 receptor inhibitor, for 3 weeks prior to rAAV-hSYN injection, maintaining it for 8 weeks to eliminate microglia.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.
After a peripheral nerve injury, Schwann cells (SCs), the myelinating glia of the peripheral nervous system, convert into repair cells that foster axonal regrowth, and then remyelinate or re-ensheath regenerated axons, thereby ensuring functional recovery. The efficiency of this mechanism depends however on the time needed for axons to regrow. Here, we show that ablation of histone deacetylase 8 (HDAC8) in SCs accelerates the regrowth of sensory axons and sensory function recovery.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Biomaterials Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran. Electronic address:
Regen Biomater
November 2024
Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.
Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!