Tomato phenylalanine ammonia-lyase gene family, highly redundant but strongly underutilized.

J Biol Chem

Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.

Published: November 2008

AI Article Synopsis

  • Phenylalanine ammonia-lyase (PAL) is crucial for plant growth and defense against pathogens, and its genes vary in number across different plants.
  • In tomato, a study found around 26 PAL gene copies in its genome, with no clustered organization and significant genetic diversity among them.
  • Despite the presence of multiple genes, only one mRNA transcript is detected even under stress, suggesting a strong silencing mechanism that may influence PAL gene evolution.

Article Abstract

Phenylalanine ammonia-lyase (PAL) is an important enzyme in both plant development and pathogen defense. In all plants it is encoded by a multi-gene family, ranging in copy number from four in Arabidopsis to a dozen or more copies in some higher plants. Many studies indicate that alternate genes are differentially regulated in response to environmental stimuli. In this study, Southern blot and dot blot analyses in tomato indicate a surprisingly large family of related sequences with approximately 26 copies in the diploid genome, some easily distinguished by restriction enzyme digestion. Analyses of a BAC genome library suggest that the genes are generally not clustered. A more detailed comparison of the gene sequences using PCR to isolate the individual copies and reverse transcription-PCR to study the transcripts that they encode indicates a significant diversity in the gene sequences themselves, but surprisingly only one mRNA transcript can be detected even when additional expression is induced by pathogen growth or wounding. Consistent with previous reports in other plants, a parallel study with a closely related plant, the potato, indicates a much broader utilization of the PAL genes, highlighting the unusual nature of this family in tomato and of the mechanism(s) that silences so many members. Plant transformation analyses further demonstrate the presence of very active silencing, suggesting aggressive competition between PAL gene duplication and copy inactivation during PAL gene evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662276PMC
http://dx.doi.org/10.1074/jbc.M804428200DOI Listing

Publication Analysis

Top Keywords

phenylalanine ammonia-lyase
8
gene sequences
8
pal gene
8
gene
5
tomato phenylalanine
4
ammonia-lyase gene
4
family
4
gene family
4
family highly
4
highly redundant
4

Similar Publications

Alginate oligosaccharide induces resistance against Penicillium expansum in pears by priming defense responses.

Plant Physiol Biochem

January 2025

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. Electronic address:

The research intended to explore the control ability of alginate oligosaccharide (AOS) on Penicillium expansum infection in pear fruit by priming response and its mechanism. The results showed that 100 mg L AOS treatment could significantly reduce the incidence of postharvest blue mold and the lesion diameter in pear fruits and maintain their quality. The defense responses induced by AOS treatment alone were relatively mild in pear fruits.

View Article and Find Full Text PDF

Short-Time High-Oxygen Pre-Treatment Delays Lignification of Loquat ( Lindl.) During Low-Temperature Storage.

Foods

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.

Lignification often occurs during low-temperature storage in loquat fruit, leading to increased firmness and lignin content, water loss, and changes in flavor. As induced stress factors, short-time high-oxygen pre-treatment (SHOP) can initiate resistant metabolism and regulate the physicochemical qualities during fresh fruit storage. However, the effect of SHOP on the lignification and quality of loquat has been reported less.

View Article and Find Full Text PDF

With the aim of enhancing plants' ability to respond to pathogenic fungi, this study focuses on disease resistance genes. We commenced a series of investigations by capitalizing on the pronounced differences in resistance to Fusarium wilt between resistant and susceptible varieties. Through an in-depth exploration of the metabolic pathways that bolster this defense, we identified genes associated with resistance to f.

View Article and Find Full Text PDF

Low-voltage electrostatic field (LP) enhances the freezing quality of food by increasing water supercooling and improving ice crystal morphology. This study explored the effects of LP treatment on the storage quality of square bamboo shoots using physicochemical, gas chromatography-mass spectrometry, and metabolomics methods. Results showed that with prolonged storage, the LP-treated group had lower activities of peroxidase, phenylalanine ammonia-lyase, and lower levels of malondialdehyde, cellulose, and lignin compared to the control group, while superoxide dismutase and catalase activities and shear force values were higher.

View Article and Find Full Text PDF

This study investigated the mechanisms employed by exogenous dopamine application in alleviating chilling injury in kiwifruits during storage at 1 °C for 120 days. Our results indicated that dopamine treatment at 150 µM alleviated chilling injury in kiwifruits during storage at 1 °C for 120 days. By 150 µM dopamine application, higher SUMO E3 ligase (SIZ1) and target of rapamycin (TOR) genes expression accompanied by lower poly(ADP-Ribose) polymerase 1 (PARP1) and sucrose non-fermenting 1-related kinase 1 (SnRK1) genes expression was associated with higher salicylic acid, ATP, NADPH and proline accumulation in kiwifruits during storage at 1 °C for 120 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!