The Caenorhabditis chemoreceptor gene families.

BMC Biol

Department of Genome Sciences, University of Washington, Seattle, WA, USA.

Published: October 2008

Background: Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species.

Results: Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei.

Conclusion: Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576165PMC
http://dx.doi.org/10.1186/1741-7007-6-42DOI Listing

Publication Analysis

Top Keywords

chemoreceptor gene
12
gene families
12
families
11
gene
8
families families
8
gene duplication
8
duplication gene
8
gene loss
8
caenorhabditis species
8
genes
7

Similar Publications

Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps.

BMC Biol

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.

View Article and Find Full Text PDF

Single-cell RNA-sequencing (scRNA-seq) is a powerful method to comprehensively overlook gene expression profiles of individual cells in various tissues, providing fundamental datasets for classification of cell types and further functional analyses. Here we adopted scRNA-seq analysis for the zebrafish olfactory sensory neurons which respond to water-borne odorants and pheromones to elicit various behaviors crucial for survival and species preservation. Firstly, a single-cell dissociation procedure of the zebrafish olfactory rosettes was optimized by using cold-active protease, minimizing artifactual neuronal activation.

View Article and Find Full Text PDF

Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds.

J Neurochem

January 2025

Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing.

View Article and Find Full Text PDF

Aberrant Positions of the Chemosensory Neurons in the Neurotransmitter-Release Mutant .

Int J Mol Sci

December 2024

Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.

Secretion of neurotransmitter- and neuropeptide-containing vesicles is a regulated process orchestrated by multiple proteins. Of these, mutants, defective in the and genes, responsible for neurotransmitter and neuropeptide release, respectively, are routinely used to elucidate neural and circuitry functions. While these mutants result in severe functional deficits, their neuroanatomy is assumed to be intact.

View Article and Find Full Text PDF

The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies.

Int J Mol Sci

November 2024

Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan.

Bitter taste perception is crucial for animal survival. By detecting potentially harmful substances, such as plant secondary metabolites, as bitter, animals can avoid ingesting toxic compounds. In vertebrates, this function is mediated by taste receptors type 2 (T2Rs), a family of G protein-coupled receptors (GPCRs) expressed on taste buds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!