There is evidence that infarcted myocardium contributes to the increase of cell-free DNA levels (cfDNA). We studied the effect of different human DNA fragments on the rate of contraction of the electrically paced neonatal rat ventricular myocytes in culture (spontaneously hypertensive line SHR). AT-rich fragments of the human satellite 3 tandem repeat (1q12 region) at a concentration of 1 ng/mL increase the frequency of cardiomyocyte contractions by 2-2.5 times. GC-rich fragments of the rDNA at 0.5 ng/mL decrease the cardiomyocyte contraction frequency by 1.5-2 times. The serum cfDNA of patients with acute myocardial infarction decreases the frequency of the contraction of cardiomyocytes proportionally to the amount of the rDNA fragments it contains. The rDNA effect is similar to the E. coli DNA effect and is presumably being realized through TLR9. In the presence of the inhibitor of these receptors, rDNA operates the same way as the fragment of the satellite 3-increasing the frequency of the cardiomyocyte contractions. Accumulation of the GC-rich fragments of the cfDNA in the blood of the AMI patients might have an influence on the contractile function of myocardial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1196/annals.1448.023 | DOI Listing |
Nat Commun
January 2025
Oxford Molecular Diagnostics Centre, Department of Oncology, University of Oxford, Oxford, UK.
The analysis of circulating tumour DNA (ctDNA) through minimally invasive liquid biopsies is promising for early multi-cancer detection and monitoring minimal residual disease. Most existing methods focus on targeted deep sequencing, but few integrate multiple data modalities. Here, we develop a methodology for ctDNA detection using deep (80x) whole-genome TET-Assisted Pyridine Borane Sequencing (TAPS), a less destructive approach than bisulphite sequencing, which permits the simultaneous analysis of genomic and methylomic data.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Shuwen Biotech Co., Ltd., Moganshan National High tech Zone, Building 3, No. 333, Changhong Middle Street, Deqing, China.
Over the past five years, circulating tumor DNA (ctDNA) testing has emerged as a game-changer in cancer research, serving as a less invasive and highly sensitive method to monitor tumor dynamics. CtDNA testing has a wide range of potential applications in breast cancer (BC) management, including diagnosis, monitoring treatment responses, identifying resistance mutations, predicting prognosis, and detecting future relapses. In this review, we focus on the prognostic and predictive value of ctDNA testing for BC in both neoadjuvant and adjuvant settings.
View Article and Find Full Text PDFLife Sci
January 2025
Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC.
View Article and Find Full Text PDFClin Transl Med
January 2025
BOE Technology Group Co., Ltd, Beijing, China.
Background: Multi-omics features of cell-free DNA (cfDNA) can effectively improve the performance of non-invasive early diagnosis and prognosis of cancer. However, multimodal characterization of cfDNA remains technically challenging.
Methods: We developed a comprehensive multi-omics solution (COMOS) to specifically obtain an extensive fragmentomics landscape, presented by breakpoint characteristics of nucleosomes, CpG islands, DNase clusters and enhancers, besides typical methylation, copy number alteration of cfDNA.
PLoS One
January 2025
Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam.
The autonomous and active Long-Interspersed Element-1 (LINE-1, L1) and the non-autonomous Alu retrotransposon elements, contributing to 30% of the human genome, are the most abundant repeated sequences. With more than 90% of their sequences being methylated in normal cells, these elements undeniably contribute to the global DNA methylation level and constitute a major part of circulating-cell-free DNA (cfDNA). So far, the hypomethylation status of LINE-1 and Alu in cellular and extracellular DNA has long been considered a prevailing hallmark of ageing-related diseases and cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!