3'-Phosphoinositide-dependent kinase-1 (PDK1) has been identified for its ability to phosphorylate and activate Akt. Accumulated studies have shown that the activation of the PDK1/Akt pathway plays a pivotal role in cell survival, proliferation, and tumorigenesis. Therefore, the PDK1/Akt pathway is believed to be a critical target for cancer intervention. In this paper, we report the discovery of a new function of phenothiazines, widely known as antipsychotics, inhibiting PDK1/Akt pathway. Upon epidermal growth factor (EGF) stimulation, phenothiazines specifically suppressed the kinase activity of PDK1 and the phosphorylation level of Akt. The inhibition of PDK1/Akt kinase resulted in suppression of EGF-induced cell growth and induction of apoptosis in human ovary cancer cells. In particular, phenothiazines were highly selective for downstream targets of PDK1/Akt and did not inhibit the activation of phosphatidylinositol 3-kinase (PI3K), EGFR, or extracellular signal-regulated kinase 1/2 (ERK1/2). In particular, phenothiazines effectively suppressed tumor growth in nude mice of human cancer cells. Taken together, these findings provide strong evidence for novel function of phenothiazines, pharmacologically targeting PDK1/Akt for anticancer drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1196/annals.1414.041 | DOI Listing |
Eur J Med Res
December 2024
Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China.
Background: The T790M mutation in the epidermal growth factor receptor (EGFR) gene is the primary cause of resistance to EGFR-tyrosine kinase inhibitor (TKI) therapy in non-small cell lung cancer (NSCLC) patients. Previous research demonstrated that certain traditional Chinese medicine (TCM) monomers exhibit anti-tumor effects against various malignancies. This study aims to investigate the potentials of shikonin screened from a TCM monomer library containing 1060 monomers in killing EGFR-T790M drug-resistant NSCLC cells and elucidate the underlying mechanisms.
View Article and Find Full Text PDFJ Adv Res
December 2024
Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China; Lead Contact. Electronic address:
Introduction: Altered epigenetic reprogramming enables breast cancer cells to adapt to hypoxic stress. Hypoxic microenvironment can alter immune cell infiltration and function, limiting the effectiveness of immunotherapy.
Objectives: The study aimed to identify how fat mass and obesity-associated protein (FTO) helps breast cancer cells cope with the hypoxic microenvironment and the mechanisms behind breast cancer cell resistance to tumor immunity.
Chem Biol Interact
October 2023
College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China. Electronic address:
Fluoride, an environmental toxicant, not only arouses intestinal microbiota dysbiosis, but also causes neuronal apoptosis and a decline in learning and memory ability. The purpose of this study was to explore whether fecal microbiota transplantation (FMT) from healthy mice and bacteria-derived metabolites short-chain fatty acids (SCFAs) supplement protect against fluoride-induced learning and memory impairment. Results showed that FMT reversed the elevated percentage of working memory errors (WME) and reference memory errors (RME) in fluorosis mice during the eight-arm maze test.
View Article and Find Full Text PDFBiomolecules
September 2024
Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
Galectin-3 (Gal-3) is a pleiotropic lectin produced by most cell types, which regulates multiple cellular processes in various tissues. In bone, depending on its cellular localization, Gal-3 has a dual and opposite role. If, on the one hand, intracellular Gal-3 promotes bone formation, on the other, its circulating form affects bone remodeling, antagonizing osteoblast differentiation and increasing osteoclast activity.
View Article and Find Full Text PDFInt J Biol Sci
September 2024
Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University.
[This corrects the article DOI: 10.7150/ijbs.20485.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!