Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stem cells, progenitor cells, and lineage-committed cells are being considered as a new generation of drug depots for the sustained release of therapeutic biomolecules. Hydrogels are often used in conjunction with the therapeutic secreting cells to provide a physical barrier to protect the cells from hostile extrinsic factors. Although the hydrogels significantly improve the therapeutic efficacy of transplanted cells, there have been no successful products commercialized based on these technologies. Recently, biomaterials are increasingly designed to provide cells with both a physical barrier and an extracellular matrix to further improve the secretion of therapeutic proteins from cells. This review will discuss (1) the cell encapsulation process, (2) the immunogenicity of the encapsulating hydrogel, (3) the transport properties of the hydrogel, (4) the hydrogel mechanical properties, and will propose new strategies to improve the hydrogel and cell interaction for successful cell-based drug delivery strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.32287 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!