A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Effects of Arg20 mutation on sodium channels activity of JZTX-V]. | LitMetric

[Effects of Arg20 mutation on sodium channels activity of JZTX-V].

Sheng Wu Gong Cheng Xue Bao

The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China.

Published: July 2008

Jingzhaotoxin-V(JZTX-V) isolated from the venom of the spider Chilobrachys jingzhao is a novel potent inhibitor that acts on tetrodotoxin-resistant and tetrodotoxin-sensitive sodium channels in adult rat dorsal root ganglion(DRG) neurons. It is a 29-residue polypeptide toxin including three disulfide bridges. To investigate the structure-function relationship of the toxin, a mutant of JZTX-V in which Arg20 was substituted by Ala, was synthesized by solid-phase chemistry method with Fmoc-protected amino acids on the PS3 automated peptide synthesizer. The synthetic linear peptide was then purified by reversed-phase high performance liquid chromatography and oxidatively refolded under the optimal conditions. The refolded product was analyzed by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry(MALDI-TOF MS) and electrophysiological experiments for its relative molecular weight and prohibitive activity of sodium channels respectively. The present findings show that the prohibitive effect of R20A-JZTX-V on TTX-S sodium channels in DRG neurons is almost the same as that of native JZTX-V, suggesting that Arg20 does not play any important role in inhibiting TTX-S sodium currents in DRG neurons. In contrast, the prohibitive level of R20A-JZTX-V on TTX-R sodium channels is reduced by at last 18.3 times, indicating that Arg20 is a key amino acid residue relative to the bioactivity of JZTX-V. It is presumed that the decrease in activity of R20A-JZTX-V is due to the changes of the property in the binding site in TTX-R sodium channels.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sodium channels
24
ttx-s sodium
8
drg neurons
8
ttx-r sodium
8
sodium
7
channels
6
[effects arg20
4
arg20 mutation
4
mutation sodium
4
channels activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!