Over the past decade live cell imaging has become a key technology to monitor and understand the dynamic behavior of proteins in the physiological context of living cells. The visualization of a protein of interest is most commonly achieved by genetically fusing it to green fluorescent protein (GFP) or one of it variants. Considerable effort has been made to develop alternative methods of protein labeling to overcome the intrinsic limitations of fluorescent proteins. In this report we show the optimization of a live cell labeling technology based on the use of a mutant form of FKBP12 (FKBP12(F36V)) in combination with a synthetic high affinity ligand (SLF') that specifically binds to this mutant. It had been previously shown that the use of a fluorescein-conjugated form of SLF' (5'-fluorescein-SLF') allowed the labeling of proteins genetically fused to FKBP-F36V in living cells. Here we describe the identification of novel fluorescent SLF'dye conjugates that allow specific labeling of FKBP12(F36V) fusion proteins in living cells. To further increase the versatility of this technology we developed a number of technical improvements. We implemented the use of pluronics during the labeling process to facilitate the uptake of the SLF'-dye conjugates and the use suppression dyes to reduce background signal. Furthermore, the time and dose dependency of labeling was investigated in order to determine optimal labeling conditions. Finally, the specificity of the FKBP12(F36V) labeling technology was extensively validated by morphological analysis using a diverse set of FKBP12(F36V) fusions proteins. In addition we show a number of different application examples, such as translocation assays, the generation of biosensors, and multiplex labeling in combination with different labeling technologies, such as FlAsH or GFP. In summary we show that the FKBP12(F36V)/SLF' labeling technology has a broad range of applications and should prove useful for the study of protein function in living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.20649DOI Listing

Publication Analysis

Top Keywords

living cells
20
labeling technology
12
labeling
11
labeling proteins
8
proteins living
8
live cell
8
proteins
6
living
5
cells
5
technology
5

Similar Publications

Effect of terahertz radiation on cells and cellular structures.

Front Optoelectron

January 2025

Institute of Physics, Saratov State University, Saratov, 410012, Russia.

The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.

View Article and Find Full Text PDF

As one of the essential components of reactive oxygen species (ROS), peroxynitrite (ONOO-) plays an indispensable role in redox homeostasis and signal transduction processes, and its deviant levels are associated with numerous clinical diseases. Therefore, accurate and rapid detection of intracellular ONOO- levels is crucial for revealing its role in physiological and pathological processes. Herein, we constructed a ratiometric fluorescent probe to detect ONOO- levels in biological systems.

View Article and Find Full Text PDF

CellREADR: An ADAR-based RNA sensor-actuator device.

Methods Enzymol

January 2025

Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:

RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.

View Article and Find Full Text PDF

Why do microplastics aggravate cholestatic liver disease? The NLRP3-mediated intestinal barrier integrity damage matter.

Environ Pollut

January 2025

Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410013, PR China. Electronic address:

Microplastics (MPs) are becoming a significant environmental and public health concern because they are present in freshwater and marine environments and are ingested by living organisms. Cholestatic liver disease (CLD) is closely related to intestinal homeostasis, but there are no data investigating the effects of MPs on CLD. In this study, we used Mdr2 mice (a model of CLD) to investigate the effects of polystyrene microplastics (PS-MPs, 0.

View Article and Find Full Text PDF

Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!