Interleukin-1beta (IL-1beta) induces the release of nitric oxide (.NO) and prostaglandin E2 (PGE2) by chondrocytes and this effect can be reversed with the application of dynamic compression. Previous studies have indicated that integrins may play a role. In addition, IL-1beta upregulates the expression of iNOS and COX-2 mRNA via upstream activation of p38 MAPK. The current study examines the involvement of these pathways in mediating .NO and PGE2 release in IL-1beta stimulated bovine chondrocytes subjected to dynamic compression. Bovine chondrocytes were seeded in agarose constructs and cultured with 0 or 10 ng.ml(-1) IL-1beta with or without the application of 15% dynamic compressive strain at 1 Hz. Selected inhibitors were used to interrogate the role of alpha5beta1 integrin signalling and p38 MAPK activation in mediating the release of .NO and PGE2 in response to both IL-1beta and dynamic compression. The relative expression levels of iNOS and COX-2 were assessed using real-time quantitative PCR. Nitrite, a stable end product of .NO, was measured using the Griess assay and PGE2 release was measured using an enzyme immunoassay. IL-1beta enhanced .NO and PGE2 release and this effect was reversed by the application of dynamic compression. Co-incubation with an integrin binding peptide (GRGDSP) abolished the compression-induced effect. Real-time quantitative PCR analysis revealed that IL-1beta enhanced iNOS and COX-2 mRNA levels, with the maximum expression at 6 or 12 hours. Dynamic compression reduced this effect via a p38 MAPK sensitive pathway. These results suggest that dynamic compression acts to abrogate of .NO and PGE2 release by directly influencing the expression levels of iNOS and COX-2.
Download full-text PDF |
Source |
---|
Nat Commun
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China.
The pursuit of obtaining enzymes with high activity and stability remains a grail in enzyme evolution due to the stability-activity trade-off. Here, we develop an isothermal compressibility-assisted dynamic squeezing index perturbation engineering (iCASE) strategy to construct hierarchical modular networks for enzymes of varying complexity. Molecular mechanism analysis elucidates that the peak of adaptive evolution is reached through a structural response mechanism among variants.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Information Management, Tunghai University, Taichung 407224, Taiwan.
Today, huge amounts of time series data are sensed continuously by AIoT devices, transmitted to edge nodes, and to data centers. It costs a lot of energy to transmit these data, store them, and process them. Data compression technologies are commonly used to reduce the data size and thus save energy.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszów University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland.
In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Laboratoire d'Energétique et des Transferts Thermique et Massique (LETTM), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El-Manar, El Manar, Tunis 2092, Tunisia.
The viability of using fibers as reinforcement material for developing lightweight sustainable non-structural construction materials in compliance with the valorization of local by-products has been investigated in this work. This study aims to investigate the effect of the chemical treatment of fibers on the mechanical and hygric properties of bio-sourced clay-sand- fiber composite. This lightweight specimen has been produced from a mixture of 60% natural clay and 40% sand by mass, as a matrix, and reinforced with different amounts of Juncus fibers.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Coal Mine Disasters Dynamics and Control, Chongqing University, Chongqing 400044, China.
To investigate the mechanical and energy evolution characteristics of fractured rock under true triaxial stresses, true triaxial strength compression experiments on fractured sandstone were conducted with varying crack lengths and widths. The results indicate that under true triaxial stresses, the peak stress of the rock exhibits a gradual decline with an increase in crack length and width. Meanwhile, crack initiation stress and crack damage stress of fractured sandstone also demonstrate a declining trend overall, and the influence of crack length on the characteristic stress (crack initiation stress and crack damage stress) of sandstone is more pronounced than that of crack width.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!