Gene clusters encoding various type III secretion system (T3SS) injectisomes, frequently code downstream of the conserved atpase gene for small hydrophilic proteins whose amino acid sequences display a propensity for intrinsic disorder and coiled-coil formation. These properties were confirmed experimentally for a member of this class, the HrpO protein from the T3SS of Pseudomonas syringae pv phaseolicola: HrpO exhibits high alpha-helical content with coiled-coil characteristics, strikingly low melting temperature, structural properties that are typical for disordered proteins, and a pronounced self-association propensity, most likely via coiled-coil interactions, resulting in heterogeneous populations of quaternary complexes. HrpO interacts in vivo with HrpE, a T3SS protein for which coiled-coil formation is also strongly predicted. Evidence from HrpO analogues from all T3SS families and the flagellum suggests that the extreme flexibility and propensity for coiled-coil interactions of this diverse class of small, intrinsically disordered proteins, whose structures may alter as they bind to their cognate folded protein targets, might be important elements in the establishment of protein-protein interaction networks required for T3SS function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662227 | PMC |
http://dx.doi.org/10.1074/jbc.M803408200 | DOI Listing |
Nat Commun
January 2025
Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
The pathological deposition of tau and amyloid-beta into insoluble amyloid fibrils are pathological hallmarks of Alzheimer's disease. Molecular chaperones are important cellular factors contributing to the regulation of tau misfolding and aggregation. Here we reveal an Hsp90-independent mechanism by which the co-chaperone p23 as well as a molecular complex formed by two co-chaperones, p23 and FKBP51, modulates tau aggregation.
View Article and Find Full Text PDFGene
January 2025
Department of Biotechnology, Pondicherry Central University, Pondicherry 605014, India.
The PWWP domain is a conserved motif unique to eukaryotes, playing a critical role in various cellular processes. Proteins containing the PWWP domain are typically found in chromatin, where they bind to DNA and histones in nucleosomes, facilitating chromatin-associated functions. Among these proteins, PWWP-domain containing proteins 2A and 2B (PWWP2A and PWWP2B), identified during the H2A interactome analysis, are DNA methyltransferase-related proteins, that are structurally disordered, except for their PWWP domain.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States.
Despite their critical role in context-dependent interactions for protein functions, intrinsically disordered regions (IDRs) are often overlooked for designing peptide assemblies. Here, we exploit IDRs to enable context-dependent heterotypic assemblies of intrinsically disordered peptides, where "context-dependent" refers to assembly behavior driven by interactions with other molecules. By attaching an aromatic segment to oppositely charged intrinsically disordered peptides, we achieve a nanofiber formation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Physics, Zhejiang University, Hangzhou, 310058, PR China.
The self-assembly of intrinsically disordered proteins (IDPs) into condensed phases and the formation of membrane-less organelles (MLOs) can be considered as the phenomenon of collective behavior. The conformational dynamics of IDPs are essential for their interactions and the formation of a condensed phase. From a physical perspective, collective behavior and the emergence of phase are associated with long-range correlations.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!