Glutamate-induced NFkappaB activation in the retina.

Invest Ophthalmol Vis Sci

Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.

Published: February 2009

Purpose: To determine the distribution and glutamate-mediated activation of nuclear factor (NF) kappaB members in the retina and pan-purified retinal ganglion cells (RGCs) and to characterize steps in the signal transduction events that lead to NFkappaB activation.

Methods: Retinal expression patterns and RGCs were evaluated for five NFkappaB proteins with the aid of immunohistochemistry. Retinal explants or RGCs were treated with glutamate with or without the presence of the NDMA receptor antagonist memantine, the calcium chelator EGTA, or a specific inhibitor for calcium/calmodulin-dependent protein kinase-II (CaMKII). Characterizations of NFkappaB activation were performed with the aid of electrophoretic mobility shift assays and supershift assays.

Results: All five NFkappaB proteins were present in the retina and in the pan-purified RGCs. In response to a glutamate stimulus, all NFkappaB proteins except c-Rel were activated. P65 was unique in that it was not constitutively active but showed a glutamate-inducible activation in the retina and in the cultured RGCs. Memantine, EGTA, or autocamtide-2-related inhibitory peptide (AIP) inhibited NFkappaB activation in the retina. Furthermore, AIP significantly reduced the level of glutamate-induced degradation of IkappaBs.

Conclusions: These data indicate that glutamate activates distinct NFkappaB proteins in the retina. P65 activation may be especially important with regard to RGC responses to glutamate given that its activity is induced by conditions known to lead to the death of these cells. The NMDA receptor-Ca(2+)-CaMKII signaling pathway is involved in glutamate-induced NFkappaB activation. Because AIP blocks the degradation of IkappaB, its regulation is clearly downstream of CaMKII.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446986PMC
http://dx.doi.org/10.1167/iovs.08-2555DOI Listing

Publication Analysis

Top Keywords

nfkappab activation
16
nfkappab proteins
16
activation retina
12
glutamate-induced nfkappab
8
retina pan-purified
8
nfkappab
8
proteins retina
8
activation
7
retina
6
rgcs
5

Similar Publications

IFN-γ licenses normal and pathogenic ALPK1/TIFA pathway in human monocytes.

iScience

January 2025

CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France.

Alpha-kinase 1 (ALPK1) is an immune receptor sensing the bacterial nucleotide sugar ADP-heptose. ALPK1 phosphorylates TIFA leading to its oligomerization and downstream NF-κB activation. Specific mutations in are associated with an autoinflammatory syndrome termed ROSAH and with spiradenoma (skin cancers with sweat gland differentiation).

View Article and Find Full Text PDF

Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes.

Front Immunol

January 2025

Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.

View Article and Find Full Text PDF

Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.

Methods: Gene expression profiles of various cell subsets were compared by mining a public database.

View Article and Find Full Text PDF

Expression and role of CTHRC1 in inflammatory bowel disease in children.

Cytotechnology

April 2025

Child Rehabilitation Department, Hubei NO.3 People's Hospital of Jianghan University, No. 26 Zhongshan Avenue, Qiaokou District, Wuhan, 430033 China.

Unlabelled: Inflammatory bowel disease (IBD) is a chronic, progressive, immune-mediated, gastrointestinal inflammatory disease with increasing occurrences in children. Collagen triple helix repeat containing 1 (CTHRC1), a migration-promoting protein, acts as a tumor-promoting factor in malignant tumors. However, functions and mechanisms of CTHRC1 in children with IBD remain unclear.

View Article and Find Full Text PDF

Background: Signaling pathways centered on the G-protein ADP-ribosylation factor 6 (Arf6) and its downstream effector ArfGAP with the SH3 Domain, Ankyrin Repeat and PH Domain 1 (AMAP1) drive cancer invasion, metastasis, and therapy resistance. The Arf6-AMAP1 pathway has been reported to promote receptor recycling leading to programmed cell death-ligand 1 (PD-L1) overexpression in pancreatic ductal carcinoma. Moreover, AMAP1 regulates of nuclear factor-kappa B (NF-κB), which is an important molecule in inflammation and immune activation, including tumor immune interaction through PD-L1 regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!