Organisms must adapt to make optimal use of the metabolic system in response to environmental changes. In the long-term, this involves evolution of the genomic repertoire of enzymes; in the short-term, transcriptional control ensures that appropriate enzymes are expressed in response to transitory extracellular conditions. Unicellular organisms are particularly susceptible to environmental changes; however, genome-scale impact of these modulatory effects has not been explored so far in bacteria. Here, we integrate genome-scale data to investigate the evolutionary trends and transcriptional control of metabolism in Escherichia coli K12. Globally, the regulatory system is organized in a clear hierarchy of general and specific transcription factors (TFs) that control differing ranges of metabolic functions. Further, catabolic, anabolic, and central metabolic pathways are targeted by distinct combinations of these TFs. Locally, enzymes catalyzing sequential reactions in a metabolic pathway are co-regulated by the same TFs. Regulation is more complex at junctions: General TFs control the overall activity of all connecting reactions, whereas specific TFs control individual enzymes. Divergent junctions play a special role in delineating metabolic pathways and decouple the regulation of incoming and outgoing reactions. We find little evidence for differential usage of isozymes, which are generally co-expressed in similar conditions, and thus are likely to reinforce the metabolic system through redundancy. Finally, we show that enzymes controlled by the same TFs have a strong tendency to co-evolve, suggesting a significant constraint to maintain similar regulatory regimes during evolution. Catabolic, anabolic, and central energy pathways evolve differently, emphasizing the role of the environment in shaping the metabolic system. Many of the observations also occur in yeast, and our findings may apply across large evolutionary distances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612968PMC
http://dx.doi.org/10.1101/gr.079715.108DOI Listing

Publication Analysis

Top Keywords

metabolic system
16
tfs control
12
metabolic
8
environmental changes
8
transcriptional control
8
catabolic anabolic
8
anabolic central
8
metabolic pathways
8
tfs
6
system
5

Similar Publications

In the era of molecular testing, thyroid nodules with indeterminate cytology are increasingly being managed nonoperatively. The false-negative rates of these molecular tests, and therefore missed malignancies, are not well defined in real-world clinical practice. This retrospective study of patients undergoing fine needle aspiration (FNA) biopsy at our health system between November 2017 and March 2022 included nodules with The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC) III and IV cytology and negative, currently negative, or negative but limited ThyroSeq version 3 (TSv3) results.

View Article and Find Full Text PDF

Proteomic Characterization of NEDD4 Unveils Its Potential Novel Downstream Effectors in Gastric Cancer.

J Proteome Res

January 2025

Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea.

The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated 4 (NEDD4) is involved in various cancer signaling pathways, including PTEN/AKT. However, its role in promoting gastric cancer (GC) progression is unclear. This study was conducted to elucidate the role of NEDD4 in GC progression.

View Article and Find Full Text PDF

Melatonin, a molecule with diverse biological functions, is ubiquitously present in living organisms. There is significant interest in understanding melatonin signal transduction pathways in humans, particularly due to its critical role in regulating the sleep-wake cycle. However, a knowledge gap remains in fully elucidating the mechanisms by which melatonin influences circadian regulation.

View Article and Find Full Text PDF

Objective: Aim: To investigate the effect of succinic acid on the humoral component of the immune system in rats.

Patients And Methods: Materials and Methods: The study was conducted on two groups of mature non-linear white rats (males) of similar weight (200-270 g, aged 6-8 months), with 5 animals in each group. The control group was fed a standard diet with free access to water throughout the experiment.

View Article and Find Full Text PDF

Background: The association between bacterial vaginosis (BV) and increased HIV acquisition risk may be related to concentrations of HIV-susceptible immune cells in the cervix.

Methods: Participants (31 with BV and 30 with normal microbiota) underwent cervical biopsy at a single visit. Immune cells were quantified and sorted using flow cytometry (N=55), localization assessed by immunofluorescence (N=16), and function determined by bulk RNA sequencing (RNA-seq) of live CD45+ cells (N=21).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!