Sixteen new thiazine-quinoline-quinones have been synthesised, plus one bicyclic analogue. These compounds inhibited neutrophil superoxide production in vitro with IC(50)s as low 60 nM. Compounds with high in vitro anti-inflammatory activity were also tested in a mouse model of acute inflammation. The most active compounds inhibited both neutrophil infiltration and superoxide production at doses 2.5 micromol/kg, highlighting their potential for development as novel NSAIDs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.09.052DOI Listing

Publication Analysis

Top Keywords

model acute
8
compounds inhibited
8
inhibited neutrophil
8
superoxide production
8
synthesis anti-inflammatory
4
anti-inflammatory structure-activity
4
structure-activity relationships
4
relationships thiazine-quinoline-quinones
4
thiazine-quinoline-quinones inhibitors
4
inhibitors neutrophil
4

Similar Publications

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

Post-acute sequelae of COVID-19 (PASC) are a diverse set of symptoms and syndromes driven by dysfunction of multiple organ systems that can persist for years and negatively impact the quality of life for millions of individuals. We currently lack specific therapeutics for patients with PASC, due in part to an incomplete understanding of its pathogenesis, especially for non-pulmonary sequelae. Here, we discuss three animal models that have been utilized to investigate PASC: non-human primates (NHPs), hamsters, and mice.

View Article and Find Full Text PDF

is a widely distributed nosocomial pathogen that causes various acute and chronic infections, particularly in immunocompromised patients. In this study, the activities of the K9-specific virulent phage AM24 and phage-encoded depolymerase DepAPK09 were assessed using in vivo mouse sepsis and burn skin infection models. In the mouse sepsis model, in the case of prevention or early treatment, a single K9-specific phage or recombinant depolymerase injection was able to protect 100% of the mice after parenteral infection with a lethal dose of of the K9-type, with complete eradication of the pathogen.

View Article and Find Full Text PDF

Effect of Hepatitis E Virus on the Male Reproductive System: A Review of Current Evidence.

Viruses

January 2025

Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.

Hepatitis E Virus (HEV) is a globally widespread pathogen that causes acute hepatitis infection. Beyond hepatic pathogenesis, HEV has been proven to cause several extrahepatic manifestations, such as neurological, renal, and hematological manifestations. It was also associated with mortality in pregnant females.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!