Current European legislation for the registration and authorization of chemicals (REACH) will require a dramatic increase in the use of animals for reproductive toxicity testing. Since one objective of REACH is to use vertebrates only as last resort, the development and validation of alternative methods is urgently needed. For this purpose ReProTect, an integrated research project funded by the European Union, joining together 33 partners with complementary expertise in reproductive toxicology, was designed. The study presented here describes a battery of two tests developed within ReProTect. The objective of these tests is the detection of chemical effects during the processes of oocyte maturation and fertilisation in a bovine model. The corresponding toxicological endpoints are the reaching of metaphase II and the formation of the pronuclei respectively. Fifteen chemicals have been tested (Benzo[a]pyrene, Busulfan, Butylparaben, Cadmium Chloride, Carbendazim, Cycloheximide, Diethylstilbestrol, Genistein, Ionomycin, Ketoconazole, Lindane, Methylacetoacetate, Mifepristone, Nocodazole and DMSO as solvent) demonstrating high intra-laboratory reproducibility of the tests. Furthermore, the responses obtained in both tests, for several substances, had a good correlation with the available in vivo and in vitro data. These tests therefore, could predictably become part of an integrated testing strategy that combines the bovine models with additional in vitro tests, in order to predict chemical hazards on mammalian fertility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2008.08.019DOI Listing

Publication Analysis

Top Keywords

chemical effects
8
tests
6
development vitro
4
vitro test
4
test battery
4
battery assessing
4
assessing chemical
4
effects bovine
4
bovine germ
4
germ cells
4

Similar Publications

Introduction: Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.

View Article and Find Full Text PDF

Revealing Toxicological Mechanisms of Small Molecules Using Chemical Biology.

Chem Res Toxicol

January 2025

Department of Chemistry, University of California, Riverside, California 92521, United States.

Defining the underlying toxicological mechanisms of various small molecules is of utmost importance in understanding the pathogenesis of chemical exposure-related human diseases and developing safe and effective therapeutics. Herein, we discuss the toxicological mechanisms of different small molecules utilizing the different tools of chemical biology.

View Article and Find Full Text PDF

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production.

View Article and Find Full Text PDF

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!