We have previously found that synaptic pathway from the basolateral amygdala (BLA) to the dentate gyrus (DG) displays N-methyl-D-aspartate (NMDA) receptor-independent form of long-term potentiation (LTP), which should be a valuable model for elucidating neural mechanisms linking emotion and memory. To explore its cellular mechanisms, we investigated possible involvement of the beta-adrenergic, muscarinic cholinergic and dopaminergic systems on LTP in this pathway of anesthetized rats. The induction of BLA-DG LTP was not affected by administration of the beta-adrenoceptor antagonist propranolol (50-150nmol, i.c.v.), the muscarinic receptor antagonist scopolamine (2-6mg/kg, i.p.), the cholinesterase inhibitor physostigmine (50 nmol, i.c.v.) or the dopamine D(1) receptor antagonist SCH23390 (100nmol, i.c.v.), but significantly inhibited by the dopamine D2 receptor antagonists, chlorpromazine (15nmol, i.c.v.) and haloperidol (0.15-0.5mg/kg, i.p.), and significantly promoted by the dopamine D2 receptor agonist quinpirole (78nmol, i.c.v.). Furthermore, lesioning with 6-hydroxydopamine of the ventral tegmental area (VTA), the origin of mesolimbic dopaminergic neurons, resulted in attenuated BLA-DG LTP. These results suggest that the D2-dopaminergic system, but not the beta-adrenergic, muscarinic or D1-dopaminergic system, is involved in the induction of BLA-DG LTP. In addition, inhibition of BLA-DG LTP by haloperidol or VTA lesion was abolished by blockade of GABAergic inhibition with picrotoxin. It is probable that the D2-dopaminergic system promotes the induction of BLA-DG LTP by suppressing GABAergic inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2008.09.005DOI Listing

Publication Analysis

Top Keywords

bla-dg ltp
20
induction bla-dg
12
dopamine receptor
12
long-term potentiation
8
pathway anesthetized
8
anesthetized rats
8
beta-adrenergic muscarinic
8
receptor antagonist
8
d2-dopaminergic system
8
gabaergic inhibition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!