Introduction: Hypertrophic cardiomyopathy (HCM) is a heterogeneous disorder of the cardiac sarcomere, resulting in myocyte hypertrophy and disarray, interstitial fibrosis, and cardiac dysfunction. Our aim was to determine whether the amount of fibrosis in HCM correlates with echocardiographic measures of diastolic dysfunction, presence of HCM-susceptibility mutations, or polymorphisms in the renin-angiotensin-aldosterone system (RAAS).

Methods: Surgical specimens from patients with obstructive HCM undergoing septal myectomy at the Mayo Clinic (2001-2004) were examined and compared with autopsy-derived tissues from age- and sex-matched normal controls. Digital image analysis was used to quantitate the fibrosis in representative microscopic sections. Genotyping was performed for myofilament-HCM using polymerase chain reaction, high-performance liquid chromatography, and direct DNA sequencing. RAAS polymorphism status was similarly established.

Results: The study included 59 HCM cases and 44 controls. Patients with HCM exhibited more fibrosis (mean 17%, range 3-45%) than controls (mean 8%, range 3-17%) (P<.0001). A significant relationship existed between amount of fibrosis and maximum wall thickness (P=.02), left ventricular ejection fraction (P=.02), and peak early/late diastolic mitral annulus velocity (E/A ratio) (P=.002). Although there was no association between amount of fibrosis and myofilament-HCM genotype status or polymorphisms in the RAAS cascade, there was a trend toward more fibrosis in patients with > or =1 C-encoding allele in CYP11B2-encoded aldosterone synthase.

Conclusions: Patients with HCM undergoing septal myectomy had significantly more myocardial interstitial fibrosis than controls. The amount of fibrosis in HCM patients correlated with degree of septal hypertrophy and left ventricular systolic and diastolic function. Notably, neither mutations in cardiac myofilament proteins or polymorphisms in RAAS exhibited strong associations with severity of myocardial fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carpath.2008.08.003DOI Listing

Publication Analysis

Top Keywords

myocardial fibrosis
8
hypertrophic cardiomyopathy
8
renin-angiotensin-aldosterone system
8
interstitial fibrosis
8
amount fibrosis
8
fibrosis hcm
8
hcm undergoing
8
undergoing septal
8
septal myectomy
8
patients hcm
8

Similar Publications

Assembly of ceria-Nrf2 nanoparticles as macrophage-targeting ROS scavengers protects against myocardial infarction.

Front Pharmacol

January 2025

The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China.

Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and mitigating oxidative stress is crucial in managing MI. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in combating oxidative stress and facilitating cardiac remodeling post-MI. Here, we engineered Cerium oxide (CeO) nanoparticle-guided assemblies of ceria/Nrf2 nanocomposites to deliver Nrf2 plasmids.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is the ultimate manifestation of the myocardial response to various genetic and environmental changes and is characterized mainly by impaired left ventricular systolic and diastolic function. DCM can ultimately lead to heart failure, ventricular arrhythmia (VA), and sudden cardiac death (SCD), making it a primary indication for heart transplantation. With advancements in modern medicine, several novel techniques for evaluating myocardial involvement and disease severity from diverse perspectives have been developed.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes.

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

Background: Dichloroacetate (DCA) has shown potential in modulating cellular metabolism and inflammation, particularly in cardiac conditions. This study investigates DCA's protective effects in a mouse model of myocardial infarction (MI), focusing on its ability to enhance cardiac function, reduce inflammation, and shift macrophage polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype.

Methods: An acute MI model was created using left anterior descending coronary artery ligation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!