Heptosides are found in important bacterial glycolipids such as lipopolysaccharide (LPS), the biosynthesis of which is targeted for the development of novel antibacterial agents. This work describes the synthesis of a fluorinated analogue of ADP-L-glycero-beta-D-manno-heptopyranose, the donor substrate of the heptosyl transferase WaaC, which catalyzes the incorporation of this carbohydrate into LPS. Synthetically, the key step for the preparation of ADP-2F-heptose is the simultaneous and stereoselective installation of both the fluorine atom at C-2 and the phosphoryl group at C-1 through a selectfluor-mediated (selectfluor=1-chloromethyl-4-fluorodiazoniabicyclo[2.2.2]octane bis(triflate)) electrophilic addition/nucleophilic substitution involving a heptosylglycal. Therefore, we detail in this article 1) the stereoselective preparation of the key intermediates heptosylglycals, 2) the development of a new fluorophosphorylation procedure allowing an excellent beta-gluco stereoselectivity with "all-equatorial" glycals, 3) the synthesis of the target ADP-2F-heptose, and 4) some comments on the contacts observed between the fluorine atom of the final molecule and the protein in the crystallographic structure of heptosyltransferase WaaC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200801279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!