Only one broadly neutralizing anti-HIV antibody, 2G12, recognises the envelope sugars of HIV. In the present study, we show that 2G12 also recognises Candida albicans and Candida tropicalis with high affinity (11 nmol/l) through a carbohydrate-dependent interaction (50% inhibitory concentration for D-fructose, 12 mmol/l). This is the first report of a neutralizing HIV antibody displaying cross-reactivity with another pathogen, revealing that the carbohydrate neutralization determinant of HIV, defined by 2G12, is more widespread amongst immunogenic, microbial surfaces than previously recognized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/QAD.0b013e328314b5df | DOI Listing |
Unlabelled: The B cell antigen receptor (BCR) complex, comprised of antigen recognition and signaling components, functions in initiating B cell activation. While structural studies have described BCR domain organization, gaps remain in our understanding of its antigen binding domain (Fab, fragment antigen-binding) disposition, and how antigen binding is sensed to initiate signaling. Here, we report antigen affinity and signaling of the immunoglobulin (Ig) class IgM and IgG BCRs and define conformational states of full-length BCRs of two human broadly neutralizing antibodies, the glycan-specific, heavy chain domain-swapped, I-shaped 2G12, and a canonical Y-shaped antibody, CH31, that recognizes the CD4-binding site on the HIV-1 Envelope protein (Env).
View Article and Find Full Text PDFACS Infect Dis
November 2022
Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States.
Access to homogeneous high-mannose glycans in high-mg quantities is necessary for carbohydrate-based HIV vaccine development research. We have used directed evolution to design highly antigenic oligomannose clusters that are recognized in low-nM affinity by HIV antibodies. Herein we report an optimized large-scale synthesis of ManGlcNAc including improved building block synthesis and a fully stereoselective 5 + 6 coupling, yielding 290 mg of glycan.
View Article and Find Full Text PDFACS Chem Biol
October 2021
The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.
While the improved treatment of human immunodeficiency virus type 1 (HIV-1) infection is available, the development of an effective and safe prophylactic vaccine against HIV-1 is still an unrealized goal. Encouragingly, the discovery of broadly neutralizing antibodies (bNAbs) from HIV-1 positive patients that are capable of neutralizing a broad spectrum of HIV-1 isolates of various clades has accelerated the progress of vaccine development in the past few years. Some of these bNAbs recognize the N-glycans on the viral surface gp120 glycoprotein.
View Article and Find Full Text PDFMolecules
June 2021
Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, A-1030 Vienna, Austria.
Glycan-targeting antibodies and pseudo-antibodies have been extensively studied for their stoichiometry, avidity, and their interactions with the rapidly modifying glycan shield of influenza A. Broadly neutralizing antiviral agents bind in the same order when they neutralize enveloped viruses regardless of the location of epitopes to the host receptor binding site. Herein, we investigated the binding of cyanovirin-N (CV-N) to surface-expressed glycoproteins such as those of human immunodeficiency virus (HIV) gp120, hemagglutinin (HA), and Ebola (GP)1,2 and compared their binding affinities with the binding response to the trimer-folded gp140 using surface plasmon resonance (SPR).
View Article and Find Full Text PDFVaccine
June 2021
Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
Metastable glycosylated immunogens present challenges for GMP manufacturing. The HIV-1 envelope (Env) glycoprotein trimer is covered by N-linked glycan comprising half its mass and requires both trimer assembly and subunit cleavage to fold into a prefusion-closed conformation. This conformation, the vaccine-desired antigenic state, is both metastable to structural rearrangement and labile to subunit dissociation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!