Molecular confinement accelerates deformation of entangled polymers during squeeze flow.

Science

Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA.

Published: October 2008

The squeezing of polymers in narrow gaps is important for the dynamics of nanostructure fabrication by nanoimprint embossing and the operation of polymer boundary lubricants. We measured stress versus strain behavior while squeezing entangled polystyrene films to large strains. In confined conditions where films were prepared to a thickness less than the size of the bulk macromolecule, resistance to deformation was markedly reduced for both solid-glass forging and liquid-melt molding. For melt flow, we further observed a complete inversion of conventional polymer viscosity scaling with molecular weight. Our results show that squeeze flow is accelerated at small scales by an unexpected influence of film thickness in polymer materials.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1157945DOI Listing

Publication Analysis

Top Keywords

squeeze flow
8
molecular confinement
4
confinement accelerates
4
accelerates deformation
4
deformation entangled
4
entangled polymers
4
polymers squeeze
4
flow squeezing
4
squeezing polymers
4
polymers narrow
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!