A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a different selectable marker (URA, TRP, or LEU), and the system provides high expression levels of three different proteins simultaneously. This system was integrated into the protocols on a fully automated plasmid-based robotic platform to screen engineered strains of S. cerevisiae for improved growth on xylose. First, a novel PCR assembly strategy was used to clone a xylose isomerase (XI) gene into the URA-selectable SUMO vector and the plasmid was placed into the S. cerevisiae INVSc1 strain to give the strain designated INVSc1-XI. Second, amino acid scanning mutagenesis was used to generate a library of mutagenized genes encoding the bioinsecticidal peptide lycotoxin-1 (Lyt-1) and the library was cloned into the TRP-selectable SUMO vector and placed into INVSc1-XI to give the strain designated INVSc1-XI-Lyt-1. Third, the Yersinia pestis xylulokinase gene was cloned into the LEU-selectable SUMO vector and placed into the INVSc1-XI-Lyt-1 yeast. Yeast strains expressing XI and xylulokinase with or without Lyt-1 showed improved growth on xylose compared to INVSc1-XI yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plasmid.2008.09.001DOI Listing

Publication Analysis

Top Keywords

sumo vector
16
saccharomyces cerevisiae
8
yeast expression
8
expression system
8
improved growth
8
growth xylose
8
strain designated
8
yeast
6
sumo
5
vector
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!